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Abstract

One essential characteristic of dynamic multi-objective
optimization problems is that Pareto-Optimal Front/Set
(POF/POS) varies over time. Tracking the time-dependent
POF/POS is a challenging problem. Since continuous envi-
ronments are usually highly correlated, past information is
critical for the next optimization process. In this paper, we in-
tegrate CORAL methodology into a dynamic multi-objective
evolutionary algorithm, named CORAL-DMOEA. This ap-
proach employs CORAL to construct a transfer model which
transfer past well-performed solutions to form an initial popu-
lation for the next optimization process. Experimental results
demonstrate that CORAL-DMOEA can effectively improve
the quality of solutions and accelerate the evolution process.

Introduction

Dynamic Multi-objective Optimization Problems (DMOPs)
are more challenging than static ones. A converged popula-
tion is hard to adapt to a changing environment in time as
it loses the exploration ability (Qian et al. 2017). Restarting
optimization may be straightforward but ineffective. Usu-
ally, a new environment is strongly relevant to the previous
one, so reusing experience has enormous potential to accel-
erate the next optimization process.

In recent years, transfer learning method has gradually
aroused considerable interest. For instance, (Jiang et al.
2018) proposed Tr-DMOEA, which combines TCA with
DMOEA. (Liu et al. 2019) proposed a Neural Network-
based Information Transfer method (NNIT) which learns
how the environment changes. However, all these methods
need to fine-tune the hyperparameters during the optimiza-
tion process.

In this paper, we propose an algorithmic framework,
which integrates a non-parametric domain adaptation
method, CORrelation ALignment, into DMOEA, named
CORAL-DMOEA.

Proposed Algorithm

CORAL-DMOEA is described in Algorithm 1. Once the en-
vironment changes, CORAL based Initial Population Gener-
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Algorithm 1 CORAL-DMOEA

Input: Dynamic Optimization Function F (·); Dynamic
Multi-objective Evolutionary Algorithm (DMOEA);

Output: The POFs of the F (·);
1: Obtain POF0 by employing a DMOEA to solve F0(·);
2: for t = 1 to iteration count do
3: if environment changes then
4: Next-Pop = CORAL-IPG(Ft(·), POFt−1);
5: POFt = DMOEA (Next-Pop);
6: else
7: Offspring reproduction;
8: end if
9: end for

10: return POFs;

Figure 1: The key steps of CORAL-IPG.

ator (CORAL-IPG) establishes an initial population for the
next evolutionary process. Figure 1 illustrates the key steps
of CORAL-IPG. Step 1 maps individuals in the obtained
POFt−1 to the objective space of Ft(·), named POF ∗

t−1.
Afterwards, for each l ∈ POF ∗

t−1, Step 2 finds the corre-
sponding x ∈ Ft(·) which is the closest to l. Finally, Step
3 outputs the set of corresponding individuals as the ini-
tial population. This figure represents the operation process
from Line 3 to Line 8 of Algorithm 2.

CORAL uses covariance to evaluate the distances be-
tween different environments and aligns the data distribution
in the past with the one in the current via minimizing the co-
variances. In the new objective space, the data feature of the
past and new environments obey similar distributions as far
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Algorithm 2 CORAL-IPG

Input: Dynamic Optimization Function Ft(·); Actual POF
obtained by the algorithm at time t− 1, POFt−1;

Output: Initial Population at time t, Next-Pop;
1: Generate solutions Xs and Xt randomly;
2: For optimization functions Ft−1(·) and Ft(·), calculate

the objective values Ft−1(Xs) and Ft(Xt);
3: POF ∗

t−1 = CORAL(Ft−1(Xs), Ft(Xt), POFt−1);
4: for each l ∈ POF ∗

t−1 do
5: x← argminx ‖Ft(x)− l‖;
6: Next-Pop = Next-Pop ∪ {x};
7: end for
8: return Next-Pop;

as possible.
Furthermore, the output of CORAL-IPG is an initial

population. Thus we can combine any population-based
DMOEA with CORAL-IPG to get a CORAL based dynamic
evolutionary algorithm.

Empirical Study

We employ the IEEE CEC 2015 benchmark problem (Hel-
big and Engelbrecht 2015) to investigate the performances
under different frequency changes. The frequency of change
τt is set to 25, 50, 100, and 200 respectively, and the cor-
responding iteration count τ is 500, 1000, 2000, and 4000.
Each function changes 20 times during a run, and each al-
gorithm runs 30 times on each test function. Before the first
change occurs, each algorithm runs 300 generations, and the
population size is 300.

MIGD and MHV are comprehensive performance met-
rics which provide an overall assessment of the convergence
and diversity of algorithms. Table 1 illustrates the ratio of
change (ROC) between DMOEAs and CORAL-DMOEAs
on MIGD and MHV metrics. The best metric values are
highlighted in the boldface.

We analyze the experimental results as a whole and draw
the following conclusions. The overall effective rate of the
CORAL-DMOEAs in MIGD metric is 87.50% (i.e., 21
cases perform well in 24 test functions). The results in
FDA4, DMOP2 dec, and HE2 perform excellently. They
belong to different DMOP types (Helbig and Engelbrecht
2015), which means that the proposed algorithm works
on all types of DMOPs. The overall effective rate of the
CORAL-DMOEAs in MHV metric is 91.67%. However, the
results in FDA5 iso and DMOP2 iso do not behave well,
which means that the proposed algorithm may not be suit-
able for the isolated functions. Thus, CORAL can signifi-
cantly improve the performances of the DMOEAs.

Conclusion and Future Work

In this paper, we propose an algorithmic framework
CORAL-DMOEA. The combination of CORAL and
DMOEAs accelerates the re-convergence of the popula-
tion via reusing experience. Besides, the advantages of
DMOEAs for solving DMOPs are preserved. The experi-
mental results prove the superiority of CORAL-DMOEA.

ROC (%) CORAL-MOEA/D CORAL-NSGA-II

FDA4 80.10 79.56
FDA5 20.53 15.01
FDA5 iso 16.01 97.02
FDA5 dec 50.92 50.28
DIMP2 66.85 24.45
DMOP2 1.13 13.09
DMOP2 iso 1.59 -9.06
DMOP2 dec 89.82 81.86
DMOP3 -0.79 73.29
HE2 95.03 86.06
HE7 52.85 60.38
HE9 13.33 -6.86

(a) ROC values of CORAL-DMOEAs on MIGD
ROC (%) CORAL-MOEA/D CORAL-NSGA-II

FDA4 104.56 2327.16
FDA5 2.86 70.24
FDA5 iso 3.04 -14.39
FDA5 dec 325.32 4693.92
DIMP2 2435.12 2019.04
DMOP2 212.25 122.04
DMOP2 iso 0.43 0.83
DMOP2 dec 1065.38 215.40
DMOP3 96.98 71.53
HE2 554.50 156.07
HE7 30.53 26.93
HE9 25.82 -5.80

(b) ROC values of CORAL-DMOEAs on MHV

Table 1: The comparison between DMOEAs and CORAL-
DMOEAs (ROC means the ratio of change)

In future, we will employ the CORAL-DMOEA in practical
application.
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