
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Learning to Model Opponent Learning (Student Abstract)

Ian Davies,1 Zheng Tian,2 Jun Wang3

University College London
Gower Street

London, United Kingdom
WC1E 6BT

1ian.davies.12@ucl.ac.uk, 2zheng.tian.11@ucl.ac.uk, 3jun.wang@cs.ucl.ac.uk

Abstract

Multi-Agent Reinforcement Learning (MARL) considers set-
tings in which a set of coexisting agents interact with one
another and their environment. The adaptation and learning of
other agents induces non-stationarity in the environment dy-
namics. This poses a great challenge for value function-based
algorithms whose convergence usually relies on the assump-
tion of a stationary environment. Policy search algorithms also
struggle in multi-agent settings as the partial observability
resulting from an opponent’s actions not being known intro-
duces high variance to policy training. Modelling an agent’s
opponent(s) is often pursued as a means of resolving the is-
sues arising from the coexistence of learning opponents. An
opponent model provides an agent with some ability to reason
about other agents to aid its own decision making. Most prior
works learn an opponent model by assuming the opponent is
employing a stationary policy or switching between a set of
stationary policies. Such an approach can reduce the variance
of training signals for policy search algorithms. However, in
the multi-agent setting, agents have an incentive to continually
adapt and learn. This means that the assumptions concerning
opponent stationarity are unrealistic. In this work, we develop
a novel approach to modelling an opponent’s learning dynam-
ics which we term Learning to Model Opponent Learning
(LeMOL). We show our structured opponent model is more
accurate and stable than naive behaviour cloning baselines.
We further show that opponent modelling can improve the
performance of algorithmic agents in multi-agent settings.

In the context of multi-agent reinforcement learning, mod-
elling an opponent can take many forms including inferring
an opponent’s motivation, representing an opponent through
underlying characteristics and learning to predict an oppo-
nent’s actions. Our work is concerned with action predic-
tion, drawing from works on agent representation and meta-
learning to model an agent’s evolution throughout learning.

Previous works have considered adapting to a non-
stationary opponent by learning a new policy once the oppo-
nent is perceived to have changed (Zheng et al. 2018). Such a
setting requires the opponent to play a stationary policy while
an effective response is learned. These prior approaches to
playing with a non-stationary opponent do not consider the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

structure of the non-stationarity of an opponent. Our work
aims to exploit the structure of an opponent’s learning process
to continuously adapt to a learning opponent. This is a fun-
damental and challenging issue in multi-agent reinforcement
learning (Hernandez-Leal et al. 2017).

Conditioning an agent’s policy upon the (predicted) action
of an opponent stabilises policy updates. This follows from
the update being specific to the gradient of the loss at a par-
ticular observation-opponent action pair. Accounting for the
opponent’s action means that, for different opponent actions
the policy acts and is updated precisely.

In the decentralised setting, where the opponent’s policy
cannot be freely accessed to attain true actions, a sufficiently
performant opponent model has the potential to overcome
the loss of information from decentralisation and therefore
enable decentralised training. Decentralisation through ac-
tion prediction would be a key advancement in multi-agent
reinforcement learning.

Methodology

We augment the centralised actor-critic architecture of multi-
agent deep deterministic policy gradients (MADDPG) (Lowe
et al. 2017) with a novel opponent model based on the meta-
learning algorithm RL2 (Duan et al. 2016). RL2 is based on
an LSTM network which stores the state of a task-specific
agent in its activations. The role of the LSTM is to adapt the
task-specific agent to a new task. The core LSTM is trained to
learn a generalisable update rule for its hidden state which can
replace closed-form gradient descent techniques for training
on new tasks. The state update rule of the LSTM therefore be-
comes an optimisation algorithm trained on the performance
of the agents it generates in varied environments.

We aim to emulate an opponent’s learning rather than learn
a generalisable optimisation technique. In light of this, our
recurrent module stores and updates a representation of the
opponent. The state update function is therefore trained to
emulate the opponent’s learning. This training is treated as a
regression problem for predicting opponent actions from the
observed history of the game. We utilise a method we term
Episode Processing (EP) whereby each episode of experience
is summarised by a bidirectional LSTM and is then used to
update our agent’s representation of its opponent.
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(a) Prediction Cross-Entropy During Play (b) Centralised LeMOL-EP Results (c) Decentralised LeMOL-EP Results

Figure 1: Results from experiments with LeMOL-EP in the centralised and decentralised setting. Solid lines are averages (mean)
from 15 runs. Shaded regions denote one standard deviation.

Experiments

We use the Open AI particle environments (Lowe et al. 2017)
for experiments. Specifically, we focus on the two-player
adversarial game Keep-Away.

Our LeMOL agents are endowed with an in-episode LSTM
network to aid with the issue of partial observability. Our
agents take on the role of the defender trying to keep the
attacker away from the goal. The goal is one of two landmarks
and the defender does not know which. The attacker is trained
using MADDPG.

Our experiments compare our MADDPG baseline, our full
LeMOL-EP model, LeMOL-EP where modelling of the op-
ponent’s learning process is removed (Ablated LeMOL-EP),
LeMOL-EP where the opponent model has perfect prediction
accuracy (LeMOL-EP Oracle OM) and LeMOL-EP where
the opponent model is untrained (LeMOL-EP Naive OM). In
the decentralised setting we also include a version of MAD-
DPG with opponent modelling to make it amenable to the
decentralised setting (MADDPG-OM).

Results

Comparison of opponent model performance for the full and
ablated LeMOL-EP models in Figure 1(a) demonstrates the
benefit, in terms of action prediction accuracy, of modelling
the opponent’s learning. Having a continuously updated op-
ponent model improves and stabilises opponent model perfor-
mance. Figure 1(b) shows the impact of improved opponent
modelling on agent performance. We find that the reduction
in the variance of policy updates resulting from conditioning
an agent’s policy on predictions of the opponent’s actions
improves overall agent performance.

In the decentralised setting (Figure 1(c)), we find that us-
ing the opponent model can enable effective decentralised
training, as the opponent model compensates for the inabil-
ity to access to others’ policies in the decentralised setting.
Note that the architecture of the opponent models is consis-
tent across centralised and decentralised settings. Our decen-
tralised model attains a similar level of performance to the
centralised MADDPG agent. The opponent model is the only
means of accounting for non-stationarity under decentralised
training. Results are therefore highly sensitive to the accuracy
of the opponent model. This is demonstrated by the instability
and poor performance of the model with a naive (untrained)

opponent model. This model collapses back to a single agent
approach ignoring the opponent’s presence.

We find that the more accurate an opponent model, the
greater the improvement in agent performance. This is par-
ticularly pronounced in the decentralised setting where the
increased opponent model accuracy and stability provided
by modelling the opponent’s learning process is essential to
attain similar performance to centralised MADDPG.

Directions for Future Work

This work provides initial evidence for the efficacy of mod-
elling opponent learning as a solution to the issue of non-
stationarity in multi-agent systems. Furthermore, we have
shown that such modelling improves agent performance
over the strong MADDPG baseline in the centralised setting.
When our approach is applied to decentralised training it
achieves comparable performance to the popular centralised
MADDPG algorithm.

Despite these promising results there is significant work
to be done to extend and enhance the framework we develop
for handling non-stationarity through opponent modelling.
We hope to pursue a formal Bayesian approach to opponent
learning process modelling in future. We hope such an ap-
proach will enable a theoretical framework to emerge which
can be validated through further experiments.
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