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Abstract

Option-critic learning is a general-purpose reinforcement
learning (RL) framework that aims to address the issue of
long term credit assignment by leveraging temporal abstrac-
tions. However, when dealing with extended timescales, dis-
counting future rewards can lead to incorrect credit assign-
ments. In this work, we address this issue by extending the
hierarchical option-critic policy gradient theorem for the av-
erage reward criterion. Our proposed framework aims to max-
imize the long-term reward obtained in the steady-state of the
Markov chain defined by the agent’s policy. Furthermore, we
use an ordinary differential equation based approach for our
convergence analysis and prove that the parameters of the
intra-option policies, termination functions, and value func-
tions, converge to their corresponding optimal values, with
probability one. Finally, we illustrate the competitive advan-
tage of learning options, in the average reward setting, on a
grid-world environment with sparse rewards.

Introduction

Humans routinely employ high-level temporal abstractions
for everyday decision making. Bacon, Harb, and Precup
(2017) investigate the use of learning temporally extended
abstractions to augment the exploration and credit assign-
ment capabilities of the actor-critic framework. However,
employing a discount factor to bound the cumulative re-
wards can inadvertently lead to incorrect credit assignment.
We address this by extending the framework proposed by
Riemer et al. (2020) for the average reward (AR) criterion1.

Figure 3(a) is a motivating example that illustrates how
simple traps can beguile the discounted rewards (DR)
framework into learning a sub-optimal credit assignment. It
illustrates two different Markov chains, resulting from two
disparate policies (πR and πB). πR always chooses red and
πB always chooses blue. When a DR-RL agent is at S0, it
prefers the sub-optimal policy πB , because ∀γ < 1:

vπR
(S11) =

γ(2− γ)

(1− γ4)
<

1

(1− γ4)
= vπB

(S21)
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1See an extended version of this paper including the appendix
at https://arxiv.org/pdf/1911.08826.pdf

Figure 1: Mean and standard deviations of the learning
curves for the average reward and discounted reward OCPG
agents, in the grid-world delivery experiment.

Policy-Gradient with Function Approximation

First, we illustrate how to extend the OCPG framework by
Riemer et al. (2020) for the AR criterion. Apart from ad-
dressing the AR criterion, our framework also presents a
simplified and intuitive approach to dealing with hierarchi-
cal option-critic algorithms (Riemer, Liu, and Tesauro 2018)
by introducing the concept of o0 and oN .
Theorem 1 (Hierarchical Average Reward Option-Critic
Policy Gradient Theorem). Given an N level hierarchical
set of Markov options with stochastic option policies at each
level π� and termination functions at each level β� differ-
entiable in their parameters θ, the gradient of the expected
reward per step with respect to θ is:
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Figure 2: An empirical demonstration illustrating the con-
vergence of the parameters ofQ(s, o), π(a|s, o), and π(o|s).
We have randomly selected one parameter from each func-
tion approximator and plotted its value against the steps.

where μΩ is the stationary distribution of the Markov chain
defined by the hierarchical policy, and Pπ,β is the probabil-
ity while at the next state, and terminating the options for
the last state, that the agent arrives at a particular new set
of option selections.

Proof. The proof for this theorem is in the Appendix.

Two-Timescale Convergence
Next, we prove that the aforementioned parameters, θ,
asymptotically converge to their optimal values, when em-
ploying a linear approximation ∀QΩ. We analyze our frame-
work using the ordinary differential equation (ODE) ap-
proach, delineated by Bhatnagar et al. (2009), and study its
asymptotic properties using the fixed points of the ODE.
Theorem 2 (Convergence Proof). For the parameter itera-
tions of the global set of shared parameters defined in Algo-
rithm 1, we have (Ĵt, υt, θt) → {(J(θ∗)t, υ∗, θ∗)|θ∗ ∈ Z}
as t → ∞ with probability one, where Z corresponds to the
set of local maxima of a performance function whose gradi-
ent is E[δπt ψ(st, at)|θ]
Proof. The proof for this theorem is in the Appendix.

Empirical Results
Finally, we look at the susceptibility of our framework to
traps, and compare it to the DR setting proposed by Riemer
et al. (2020). Figure 3(b) depicts a grid world environment
characterized by sparse rewards. An agent must navigate to
either one of the pickup locations, P1 or P2, in order to re-
trieve a parcel; and must subsequently deliver the parcel to
the drop off location. The agent gets a reward of +100 for ev-
ery parcel from P2, and +50 for every parcel from P1. The
optimal policy for an agent would naturally involve picking
up the parcels from P2.

We introduce a trap1 at the green-blue junction to entice
the DR-RL agents into picking up the parcels from P1. Once

1The reward of +20 was primarily chosen for illustrating the
potential pitfalls when employ a γ ≤ 0.9. Similar traps can be
created for any γ ≤ 1.

Figure 3: (a) A trap that employs delayed rewards to fool
DR-RL agents into learning incorrect credit assignments.
(b) A grid-world navigation experiment where the reward
at the drop off point depends upon which pickup location
was previously visited (50 for P1 and 100 for P2). The trap
at the blue-green junction misguides agents towards the sub-
optimal pickup location, P1.

the agent reaches the blue zone, it obtains a reward of +20
as opposed to a reward of +10 at the red-green junction. In
Figure 1, we plot the rewards obtained per cycle for both
the AR-RL agent and a DR-RL agent, and show that the
hierarchical AR policy gradient performs better than its DR
counterpart proposed by Riemer et al. (2020). Finally, we
illustrate the asymptotic convergence of the actor and critic
parameters in Figure 2.

Conclusion and Future Work

In this work, we propose a novel method for maximizing
the long term steady-state reward, by learning intra-option
policies, termination functions, and value functions end-to-
end. These algorithms can be used in infinite-horizon con-
trol problems that exhibit an inherent cyclic structure, like
inventory-management, queuing and traffic light control. A
detailed empirical analysis for a cyclical infinite-horizon ap-
plication would be necessary to demonstrate the viability of
our approach in complex environments. Additionally, while
the proofs provided here leverage a linear approximation for
each of theQΩ(s, o

0:�), it would also be interesting to inves-
tigate the convergence properties of a non-linear critic.
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