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Abstract

We propose a decentralized multi-agent deep reinforcement
learning architecture to investigate pattern formation under
the local information provided by the agents’ sensors. It con-
sists of tasking a large number of homogeneous agents to
move to a set of specified goal locations, addressing both
the assignment and trajectory planning sub-problems concur-
rently. We then show that agents trained on random patterns
can organize themselves into very complex shapes.

1 Introduction

Let us assume that an instructor needs her n students in the
play area to form a 2D shape/pattern such as a circle so that,
for example, they can play a game. The instructor may draw
a hover on the ground as a rule or even give every student
a particular position to move to. Now, imagine a scenario
where the instructor does not give such help. Indeed, even
without such help, the kids may, in any case, have the option
to frame an adequately decent estimation of a circle if every
one of them moves depending on the movement of others by
directly observing their neighborhood region. If successful,
this method can be called a distributed solution to the cir-
cle formation problem for children (Suzuki and Yamashita
1999).

We utilized a methodology based on previous example to
control a group of various agents. The principal idea is to
give every agent a chance to execute a straightforward es-
timation of its states and plan its actions depending on the
actions and states of the remaining agents so that the agents
as a team will cooperatively accomplish the given objective.
Up to now, the vast majority of the current methods have
been focused on either centralized methods in which a leader
agent estimates the actions of all agents or a decentralized
method (Lowe et al. 2017) in which the agents have a full
view and knowledge of their environment and its dynamics.

In this paper, we investigate how a large-scale system of
independent learning agents can achieve an acceptable col-
lective pattern formation. For this purpose, we propose (1)
an end-to-end decentralized learning architecture in which

∗Partly supported by JSPS KAKENHI Grant No. 17KT0044.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents do not explicitly communicate; (2) use a centralized
replay memory to share knowledge; (3) and use a centralized
target network to take into account the dynamics of others.
The goal is to control the overall shape of a robot team by us-
ing only the local information provided by agents’ sensors.
Interestingly, the positions or goals of the individual agents
in the group are not explicitly controlled. Agents should con-
currently and independently learn to locate their goal posi-
tion and consequently plan a smooth trajectory towards it.

2 Methods

A decentralized partially observable Markov decision pro-
cess (dec-POMDP) (Bernstein et al. 2002) is defined as a
tuple 〈D,S,A, T ,R,Ω,O, h, I〉, where D = {1, ..., n} is
a set of n agents. S is a finite set of states s in which the
environment can be. A is the finite set of joint actions of
agents, A = A1 × ... × An. T is a probabilistic transition
function and R is the immediate reward function. Ω is the
finite set of joint observations with Ω = O1 × ... × On.
O is the observation probability function, h is the hori-
zon of the problem, and I is the initial state distribution at
time t = 0. The environment transits from st to st+1 with
a probability p(st+1|st,at) ∈ T when all actions at =
〈a1t , . . . ant 〉 are executed. Then agent i receives a reward
rit = R(st+1|sit, ait). The observation o can be approximated
by a kth order history approach which uses the last k obser-
vations and actions. In our case, o = 〈ot, ot−1, ot−2,at−1〉
(Diallo and Sugawara 2018). This approach can manage any
latent state information compared to using directly the latest
observation as the observation.

We propose a decentralized system with a centralized re-
play memory (Fig. 1) to tackle the problem of multi-agent
pattern formation. Each agent has a limited visual field of
depth k (shape = [2k + 1, 2k + 1]) – that is, an agent can
observe teammates, obstacles, and walls within its neighbor-
hood region. The agents are homogeneous and anonymous,
that is they cannot be distinguished by their appearance.
Besides, our framework works in a completely distributed
mode and agents have no preference for goal destinations.

Each agent of the team has its own main network and a
shared target network. It stores and updates its representa-
tion of the environment by randomly sampling from the re-
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Figure 1: Distributed model with centralized replay memory.

Figure 2: Left: average success rate. Right: average reward

play memory. As a consequence, each agent independently
computes its patrolling plan by taking advantage of other
agents knowledge without exchanging coordination mes-
sages. This approach can accelerate the convergence rate if
combined with a good exploration strategy. In addition, the
centralized target network is updated by the average weights
of individual agents’ networks. By doing so, we also ensure
that an agent can react to the previous actions and rewards
of others by taking into account their dynamics. As a result,
this somehow provides some sort of communicate to cope
with the local view.

3 Results

We use a centralized system as a baseline, in which a
team’s strategy is computed by a central agent and subse-
quently communicated to all teammates. We also compare
our method against a discrete action space version of MAD-
DPG (Lowe et al. 2017). To improve the effectiveness of our
method and its ability to generalize on completely random
and unseen environment, the agents were trained on a large
2-d grid graph (150 × 150) with utmost 500 randomly gen-
erated landmarks at the beginning of each episode.

Figure 2 shows the average reward and completion rate
of different visual field depths. With a smaller view range,
MADDPG achieved the highest reward, followed by the
centralized network while our method struggles to learn any-
thing useful. As the view range increases (k ≥ 2), the pro-
posed method steadily improves while the performance of
MADDPG was less stable. The instability of MADDPG is
due to the exchange of observation during training. In sum,
with a large enough view range, agents can solve their tasks
by using either our proposed method or a centralized system

Figure 3: 550 agents try to organize themselves into an X
shape in an 150× 150 grid-graph.

with a lead agent. However, the gains are very marginal with
a very large k compared to the computational cost.

While our method has a similar average success rate as
the centralized method for k ≥ 4, it also achieved the high-
est rewards among all methods. This means that agents us-
ing this method take less time to learn acceptable strategies.
Surprisingly, we observe in all methods, agents do prefer
to achieve finish most of their tasks during the first hun-
dred steps before slowly trying to complete and improve the
global shape (Fig. 3). In addition, MADDPG agents trained
on randomly generated patterns cannot generalize well on
unseen and structured patterns when the number of agents is
large as in Fig 3.

4 Conclusion

We showed that agents using our method can organize them-
selves into complex 2-dimensional pattern even though they
were trained on random patterns. While a centralized tech-
nique can achieve acceptable results, our method outper-
formed all the baselines. Furthermore, our method gener-
alized better to unseen environments without retraining the
agents. Finally, it would be interesting to investigate our
method for multi-pattern formations in which agents are ex-
pected to achieve smooth transitions between given patterns.
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