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Abstract

Our neural architecture search algorithm progressively
searches a tree of neural network architectures. Child nodes
are created by inserting new layers determined by a transi-
tion graph into a parent network up to a maximum depth and
pruned when performance is worse than its parent. This in-
creases efficiency but makes the algorithm greedy. Simpler
networks are successfully found before more complex ones
that can achieve benchmark performance similar to other top-
performing networks.

Introduction

In this paper, we propose a neural architecture search al-
gorithm that generates a search tree of possible neural net-
works. This is done by defining a transition graph of valid
network layers. The transition graph eliminates the exhaus-
tive search of additional network layers within a network
and is the only form of human intervention that our algo-
rithm requires. For nearly any problem, our algorithm cre-
ates a more efficient way of finding simple neural networks
(fewer parameters and layers).

Our algorithm is a progressive neural architecture search,
derived from Levin search (Schmidhuber 1997). Levin
search finds low-complexity networks by starting with sim-
ple networks and adds complexity until a suitable network is
discovered. The Automatic Statistician conducts a progres-
sive search of kernels for Gaussian Process regression (Du-
venaud et al. 2013). Parent-child relationships are defined
by the composition of atomic kernel functions. Similarly, we
construct neural networks by inserting layers.

This algorithm differs from recent Neural Architecture
Search (NAS) algorithms that find cell structures for fixed-
depth networks (Liu, Simonyan, and Yang 2018; Zoph and
Le 2016; Liu et al. 2017). However, (Liu et al. 2017) uses
progressive search to find the cell structure and prunes gen-
erated networks that are not unique in architecture. For full
optimization of cell-based NAS, the number of network lay-
ers must also be optimized. A two-stage optimization can
accelerate NAS, but the cell structures favor convolutional
neural networks (Zoph and Le 2016). Our approach can find
non-convolutional networks.
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Figure 1: This transition graph defines valid neural network
layer sequences in the search tree. Output is a 10 neuron
Dense softmax layer

Algorithm

The algorithm is a Depth First Search (DFS) of a tree of net-
work architectures. The input and output layers are defined
by the problem specification. We expand the search tree by
adding new layers into leaf-node networks up to a maximum
depth. Child nodes inherit the layers, weights, and hyperpa-
rameters of their parents. New layers are drawn from transi-
tion graph edges leaving the network insertion point.

New layers’ hyperparameters are optimized by testing
predefined values but this process takes more than half of
the runtime. Other optimization procedures, like Bayesian
optimization, could decrease execution time.

Child networks are trained for a fixed number of epochs
and are pruned if they perform worse than their parent, re-
ducing search time. The pruning rule could exclude optimal
networks. However, multiple networks with the same layer
sequence, but different hyperparameters, can be discovered
within this tree, providing some redundancy.

Central to this algorithm is neural network layer transition
graph (Fig 1). We used (Convolution, Dense, Dropout, Flat-
ten, and Max Pooling) layer types. Transition graph edges
were chosen by surveying neural network literature. Net-
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Model # of Parameters Time to Train Computer Specification

GoogleNet 4M CPU
VGG16 ∼26M Weeks Nvidia Titan Black GPUs
AlexNet ∼60M 6 days 2 Nvidia GeForce 580 GPUs

Our Model 98K 4 days Intel i7 8th Generation CPU

Table 1: Size and execution time of some Fashion MNIST networks compared to the generated network.

Figure 2: Accuracy of non-preprocessed model vs our model
on Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017)

works architectures are paths from start to the Output node.
Progressively adding network layers provides a Levin-like

search of increasing complexity. We continue searching un-
til a maximum depth, but this depth constraint can be re-
placed with a threshold on network performance. The algo-
rithm should identify simpler networks (fewer parameters)
that have desired performance before more complex ones.

Experiment

The algorithm was tested on the unprocessed Fashion-
MNIST dataset (Xiao, Rasul, and Vollgraf 2017) with a
maximum depth of three. After four days of running on
an Intel i7 8th generation CPU, 61 different network ar-
chitectures were created with the best having an accuracy
of 91.9%. Fig 2 compares our algorithm’s best accuracy to
other networks trained on the same dataset. Our model has
<2% difference in accuracy compared to GoogleNet’s accu-
racy of 93.7% (Xiao, Rasul, and Vollgraf 2017).

Table 1 shows further comparison of GoogleNet, VGG16,
and AlexNet against our best model found with Fashion
MNIST. GoogleNet, VGG16, and AlexNet each have over
four million parameters while the generated model has less
than one hundred thousand parameters. No definitive run-
time for GoogleNet was found on a CPU, but creators
estimate at least one week on a few GPU is needed to
train the full network (Szegedy et al. 2015). AlexNet and
VGG16 both ran on multiple GPUs, needing 6 days and sev-
eral weeks to train, respectively (Krizhevsky, Sutskever, and
Hinton 2012; Simonyan and Zisserman 2014). Recall our
algorithm ran for only four days on a single CPU, generat-
ing, training, and evaluating 61 models. Benchmark training
times in Table 1 refer to single networks and exclude human

expert refining.

Conclusion

Our algorithm progressively searches a tree of neural net-
works. The algorithm is simple to implement, but depends
on the transition graph to define allowable networks. The
search space is further restricted by pruning less-performant
children, risking missing optimal networks.

Our approach contrasts with cell-based NAS algorithms
by optimizing the whole network, and can produce non-
convolutional networks. The search space can be tailored
through the design of the transition graph, determining what
kinds of networks the search algorithm can produce.

We tested the algorithm on the Fashion-MNIST dataset
without preprocessing. Training and evaluating networks on
a CPU produced a simple model with preformance compa-
rable to benchmarks, but without human intervention. The
result was acquired in less time than to train and test other
benchmark models on the same dataset.
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