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Abstract
Despite their widespread applications, deep neural net-
works often tend to overfit the training data. Here, we pro-
pose a measure called VECA (Variance of Eigenvalues of
Covariance matrix of Activation matrix) and demonstrate that
VECA is a good predictor of networks’ generalization perfor-
mance during the training process. Experiments performed on
fully-connected networks and convolutional neural networks
trained on benchmark image datasets show a strong correla-
tion between test loss and VECA, which suggest that we can
calculate the VECA to estimate generalization performance
without sacrificing training data to be used as a validation set.

Introduction
In recent years, deep neural networks with a large number of
parameters have achieved great success on many AI tasks.
However, overfitting is a serious problem in such networks.
It raises an important question: how should we detect over-
fitting when training a neural network? To predict the ten-
dency of the test error, validation-based early stopping is a
usually used one in practice. However, in real AI application
scenarios, few training samples are usually available which
makes it difficult to know when to stop training the deep
neural network.

By analyzing the covariance matrix of the hidden repre-
sentations of trained networks, we construct a statistic met-
ric to monitor the training dynamics of neural networks and
find that the metric is highly correlated with the test loss both
in fully connected neural networks and convolutional neural
networks, thus it could serve as an alternative method for
early stopping.

Motivation
Our motivation comes from the researches with regards to
the units’ importance. Some researches think that a unit’s
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importance is influenced by the variance of its outputs with
respect to the neural network’s inputs (Guyon and Elisse-
eff 2003; Dhamdhere, Sundararajan, and Yan 2019). Other
researches argue that its correlation with other units is an im-
portant factor for avoiding overfitting (Cogswell et al. 2016).
It is natural that we propose to study the property of the em-
pirical covariance matrix of the activation matrix which en-
codes both the variance term and covariance term into a sin-
gle matrix.

Morcos et al found that as networks begin to overfit, they
become more reliant on the single directions (Morcos et al.
2018). Since the outputs of the last hidden layer provide the
features for the output layer to make the final decision, we
divide any neural network into two parts: the layers before
the output layer and the output layer. We focus on the outputs
of the last hidden layer and regard them as a random vector.

We calculate the Variance of Eigenvalues of Covariance
matrix of Activation matrix (VECA) to characterize the re-
liance. Our metric VECA essentially characterizes variance
of the variances of the principal components of the origi-
nal activation matrix. In the sense of PCA, VECA can be
thought of as a simple measure for measuring feature space’s
redundance. The more the network relies on single direc-
tions, the larger the VECA will be. A small VECA means
that the units in the hidden layer cannot be summarized well
by just few first components. It’s known that the irredundant
features benefit the final classification performance while re-
dundant features harm the performance.

Proposed Method
Let l denote the last hidden layer of a neural network, which
has n units. Given m data points S = {x1, · · · , xm}, which
are randomly drawn from the training set. For the layer l,
let Zl

i· be the activation outputs on xi,

Zl
i· = [Zl

i1, · · · , Zl
in] (1)

where i = 1, 2, · · · ,m and xi ∈ S. Supposing the outputs
of the jth unit in the hidden layer is a random variable, let
Zij be the ith independently drawn observation on the jth

random variable (j = 1, · · · , n). These observations can be
arranged into m column vectors, each with n entries, with
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Figure 1: Left: The training dynamic of the test loss and VECA trained on Fashion-MNIST in fully connected network. Right:
The training dynamic of the test loss and VECA trained on Fashion-MNIST in convolutional neural network.

the n × 1 column vector giving the ith observations of all
variables being denoted Zi· (i = 1, · · · ,m).

Broadening our view from a observation to the collection
of m observations, the layer’s outputs over m inputs can be
thought of as a set of neuron vectors, which could be ar-
ranged as the columns of a activation matrix Z, so that

Z = [Z1,Z2, · · · ,Zm] (2)

Z̄ =
1

m

m∑

i=1

Zi· (3)

where Z̄ denote the sample mean vector, which is a col-
umn vector whose jth element Z̄j is the average value of the
m observations of the jth unit. Then the covariance matrix
CZ is defined via:

Cz =
1

m− 1

m∑

i=1

(Zi· − Z̄)(Zi· − Z̄)T (4)

the (j, k)th element of this covariance matrix Cz is given by

Cjk =
1

m− 1

m∑

i=1

(Zij − Z̄j)(Zik − Z̄k) (5)

where j, k = 1, 2, · · · , n.
According to the definition, the covariance matrix is a

symmetric matrix with the variances on its diagonal and the
covariances off-diagonal. Cz is also positive semi-definite,
thus the eigenvalues of this matrix are non-negative.

Once we get the covariance matrix Cz , we perform eigen-
value decomposition of the Cz , obtaining a set λ which con-
tains n eigenvalues λ = {λ1, · · · , λn}, λ1 ≥ λ2 ≥ · · ·λn ≥
0, where n is the number of units in the last hidden layer.
Then, the empirical variance of the n eigenvalues can be
written as

V ar(λ) =
1

n

n∑

i=1

(λi − λ̄)2 (6)

where λ̄ is the average value of these n eigenvalues, i.e.,
λ̄ = 1

n

∑n
i=1 λi, i = 1, · · · , n

Finally, we get a statistic called VECA, whose value
equals to V ar(λ). A n × n covariance matrix captures the
spread of n-dimensional extracted feature. We expect the
feature spread uniformlly across the n dimensions rather
than just few first principal dimensions.

Experimental Results
To evaluate the effectiveness of VECA for detecting over-
fitting, we test our method on two kinds of networks: fully
connected networks and convolutional networks. Both are
trained on the Fashion-MNIST datasets.

We train 50 fully-connected network models with differ-
ent hyperparameter settings, including the size of hidden
units, learning rate, and different initialization of weights.
We calculate the VECA of the last hidden layer every two
epochs during the training process and plot the dynamic
change of test loss and VECA in the same plots.

Interestingly, we can see from Figure 1 that the point
when VECA begins to rise is nearly the point when the test
loss starts to rise. In addition, we find that test loss and
VECA are highly positively correlated both in fully con-
nected networks and convolutional networks. Furthermore,
for any two points with small training loss, with a large prob-
ability, we can conclude that the larger VECA is, the worse
the net’s generalization ability will be.

Conclusion
Our results suggest that we can calculate the VECA to es-
timate generalization performance without sacrificing train-
ing data to be used as a validation set, especially when la-
beled training data is sparse. Another clear extension of this
work is to construct a regularizer to decrease VECA during
the network’s training process. Dropout is an obvious can-
didate since it can reduce the network’s reliance on single
directions.
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