
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Action Graphs for Goal Recognition Problems
with Inaccurate Initial States (Student Abstract)

Helen Harman,∗ Pieter Simoens
Department of Information Technology – IDLab, Ghent University – imec,

Technologiepark 126, B-9052 Ghent, Belgium
{helen.harman, pieter.simoens}@ugent.be

Abstract

Goal recognisers attempt to infer an agent’s intentions from
a sequence of observations. Approaches that adapt classical
planning techniques to goal recognition have previously been
proposed but, generally, they assume the initial world state is
accurately defined. In this paper, a state is inaccurate if any
fluent’s value is unknown or incorrect. To cope with this, a
cyclic Action Graph, which models the order constraints be-
tween actions, is traversed to label each node with their dis-
tance from each hypothesis goal. These distances are used
to calculate the posterior goal probabilities. Our experimen-
tal results, for 15 different domains, demonstrate that our ap-
proach is unaffected by an inaccurately defined initial state.

Introduction
Goal recognisers are an important component of intelligent
systems that aim to assist or thwart actors; however, there
are many challenges to overcome. For instance, the defined
initial state of the environment could be inaccurate. In this
paper, a state is inaccurate if any fluent’s (i.e, non-static vari-
able’s) value is unknown or incorrect; e.g., if an item is oc-
cluded, its location is indeterminable, thus possibly defined
incorrectly. To our knowledge, this remains an open chal-
lenge for goal recognisers that stem from planning methods.

Knowledge driven (symbolic) goal recognition (GR) ap-
proaches can be divided into those that parse a library of
plans (Geib and Goldman 2009) and those that take classi-
cal planning languages, such as Planning Domain Definition
Language (PDDL), as input (Ramı́rez and Geffner 2010).
Our approach generates a graph structure, similar to those
used by some recognition as parsing methods, from a PDDL
defined GR problem.

Action Graphs model the dependencies, i.e., order con-
straints, between all actions. After generating an Action
Graph, its nodes are labelled with their distance from each
hypothesis goal. These two processes are performed offline.
For each observation, the online process updates the goal
probabilities based on either the observed action’s distances
from the goals or the change in distance.

∗Harman is an SB fellow at FWO (1S40217N).
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
To create a concise, grounded representation of a problem,
a PDDL defined problem is often converted into a multi-
valued representation (Helmert 2006). Once converted, a GR
problem can be defined as T = (F, I, A,O,G), where F is
a set of fluents, I the initial state, A a set of actions and G is
the set of possible (hypothesis) goals (Ramı́rez and Geffner
2010). O is a sequence of discrete observations (i.e., actions)
to reach a goal G ∈ G. An action a ∈ A has effects aeff ⊆
F and preconditions apre ⊆ F . GR approaches return a set
of candidate goals C, containing the goals with the maximum
probability/value.

In our system, the set of actions A contains all ground-
ings of the action definitions whose static preconditions are
within the PDDL defined initial state, including those that
are unreachable given the value of the fluents in I . For in-
stance, when the observee’s location is missing from I (e.g.,
because it is unknown) all groundings of the move(?1 ?2)
action definition are still in A, as long as the locations, i.e,
groundings of ?1 and ?2, are defined as being adjacent.

Method
Action Graphs are constructed of action nodes and oper-
ator nodes, which includes DEP (short for dependencies),
UNORDERED-AND, OR and ORDERED-AND nodes. An
action’s dependencies are conveyed through its connections
(via operator nodes) to other actions. A dependency is an
action that sets one or more of a dependant’s preconditions.
For instance, a2 is a dependency of a1 if a2 fulfils one
(or more) of a1’s preconditions, i.e., a2eff ∩ a1pre �= ∅.
Thus, an action’s set of dependencies is formally defined as:
D(a ∈ A) = {a′ | (a′eff ∩ apre) �= ∅}. The different node
types, depicted in Figure 1, are described below.

Figure 1: The different order constrains on actions that
achieve a1’s preconditions, i.e., (a2∧a3∧(a4∨a5)∧(a6 ≺
a7)) ≺ a1. Solid arrows point to the dependant and dashed
arrows point to the dependencies.

13805

• DEP nodes indicate an action’s dependencies are per-
formed before the action itself, e.g., D(a1) ≺ a1. If an
action has dependencies, its only parent is of type DEP.

• UNORDERED-AND nodes denote that different depen-
dencies set different preconditions (and there are no order
constraints on the dependencies), e.g., if a2 ∈ D(a1),
a3 ∈ D(a1) and a1pre ∩ a2eff �= a1pre ∩ a3eff then
(a2 ∧ a3) ≺ a1.

• OR nodes express the multiple (alternative) ways a pre-
condition can be reached, e.g., if a4 ∈ D(a1), a5 ∈
D(a1) and a1pre ∩ a4eff = a1pre ∩ a5eff then (a4 ∨
a5) ≺ a1.

• ORDERED-AND nodes indicate there are order con-
straints between an action’s dependencies. Such con-
straints are required when executing one dependency
could unset the preconditions of another. For example, if
a6 ∈ D(a1), a7 ∈ D(a1) and both a6pre and a7eff con-
tain the same fluent but with different values, then a6 is
performed before a7, i.e., (a6 ≺ a7) ≺ a1. If these con-
straints are cyclic, e.g., (...a6 ≺ a7 ≺ a6...) ≺ a1, then
the constraint is ignored; in other words, the dependencies
are considered to be unordered.

An Action Graph is initialised with an OR node as the
root; then each action (a ∈ A) is inserted into the graph in
turn by connecting it to its dependencies. Finally, the graph
is adjusted so only the Goal Actions’ parent DEP nodes are
connect to the root. Goal Actions are actions whose effect(s)
reach a goal; if multiple actions are required to reach a goal,
an auxiliary Goal Action is inserted.

Each node has a set of distances associated with it, which
indicate how far the node is from each goal, i.e., the number
of DEP and ORDERED-AND nodes that must be traversed
to get from the Goal Action’s parent to the node in question.
These distances are set by performing a breadth-first traver-
sal (BFT) from each Goal Action. The same node could be
visited multiple times during a BFT; however, if the current
distance/count is greater than (or equal to) the node’s already
assigned distance, it is not reprocessed.

As an action could appear in a plan multiple times, some
nodes require multiple distances for the same goal; this is the
case for the descendants of ORDERED-AND nodes’ right-
branch. Therefore, a node contains a map for each goal, from
the last traversed ORDERED-AND to the node’s distance
from the goal via the ORDERED-AND node. When the
right-branch of the ORDERED-AND node has been fully
observed, the distance of the node, returned when calling a
get distance method, will be the distance associated with that
ORDERED-AND node.

The hypothesis goals have a uniform prior probability,
which is updated when an observation is received. If the pre-
vious ot−1 and the current (just received) ot observations
are linked via a DEP or ORDERED-AND node, each goal’s
probability is updated based on its change in distance, i.e.,
P (G) = norm(P (G)(1+σ(dis(ot−1, G)−dis(ot, G))))).
Otherwise, the probability of the goals closest to the obser-
vation are increased and the others decreased, i.e., P (G) =

norm(P (G)(1+(dis(ot,G)∑
G′∈G dis(ot,G′)

))). If either observation

is not an (indirect) dependency of the goal, the goal’s prob-
ability is (likely) decreased, i.e., P (G) = norm(P (G)(1 +
0)). So that our system can recover from noisy (incorrect)
observations, a goal’s probability is never set to 0.

Results and Discussion
Our approach and the goal completion heuristic (hgc) of
Pereira, Oren, and Meneguzzi (2017) was ran on a dataset,
containing the first 10 %, 30 %, 50 %, 70 % and 100 % of
observations, encompassing 15 difference domains. Differ-
ing percentages of fluents where set to a randomly selected,
incorrect initial value. The resulting F1-Scores, shown in
Figure 2, demonstrate that our approach is unaffected by an
inaccurate initial state; whereas the accuracy of hgc declines.

Figure 2: Graph showing the effect increasing the amount of
incorrect fluents in the initial state had on the accuracy of
our Action Graph approach (solid lines) and hgc by Pereira,
Oren, and Meneguzzi (2017) (dashed lines). Each colour in-
dicates a different % of observations.

Conclusion
An Action Graph represents the dependencies, i.e., order
constraints, between actions. Each node is labelled with the
number of DEP and ORDERED-AND nodes, traversed to
reach it from each Goal Action. This distance is used to up-
date the goals’ probability when an observation is received.
Experimental results demonstrate that our approach is unaf-
fected by inaccuracies within the defined initial state.

References
Geib, C. W., and Goldman, R. P. 2009. A probabilistic plan
recognition algorithm based on plan tree grammars. Artifi-
cial Intelligence 173(11):1101 – 1132.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI’17, 3622–3628. AAAI Press.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI’10, 1121–1126. AAAI Press.

13806

