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Abstract

Outlier based Robust Principal Component Analysis (RPCA)
requires centering of the non-outliers. We show a “bias trick”
that automatically centers these non-outliers. Using this bias
trick we obtain the first RPCA algorithm that is optimal with
respect to centering.

1 Introduction

Principal Component Analysis (PCA) is arguably the most
widely used dimensionality reduction technique. It is known
that the PCA model is heavily influenced by data outliers.
The detection and removal of such outliers is a key compo-
nent of robust variants of PCA.

There are two main variants of standard PCA: centered
and uncentered. The only difference between them is that in
centered PCA there is a preliminary step where the data is
being centered. From a computational point of view there is
little difference between these two variants. For this reason
most recently published fast algorithms for computing PCA
ignore the centering of the data. The situation is very dif-
ferent for algorithms that attempt to compute Robust PCA
(RPCA) by identifying some points as outliers to be re-
moved. The problem is that the centering should be applied
only to the non-outliers, but they are initially unknown.

Some previously proposed RPCA algorithms perform ini-
tial centering of the data but do not update the center
based on the outliers. These include (Zhang et al. 2015;
Xu et al. 2010; Shah et al. 2017). Other algorithms such
as (Xu,et al. 2013; Rahmani and Atia 2017) do not explicitly
center the data. The first assumes a probability distribution
of the mean, and the second does not consider the magnitude
but only angles which makes centering unnecessary. Other
algorithms such as (Hubert and Engelen 2004) handle the
centering as part of the algorithm, but not optimally. This
review of the current state of the art suggests that optimal
centering in RPCA is not fully solved.

We propose a general method (a bias trick) that can be
used to convert any robust algorithm that does not perform
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centering into an algorithm that performs centering opti-
mally. In fact, the bias trick can be used to convert any algo-
rithm that computes uncentered PCA into an algorithm that
computes a centered PCA.

Using the bias trick with the algorithm of (Shah et
al. 2017) that computes optimal uncentered RPCA gives
the first optimal centered RPCA algorithm. We imple-
mented this algorithm and describe some experimental re-
sults, showing improved performance over all competitors.

2 The Bias Trick

Let PCA() be an uncentered PCA algorithm. It gets as in-
put the matrix X of size m×n and the number k of desired
principal vectors. It returns the principal vectors as v1, ..., vk
and the corresponding eigenvalues. To apply the bias trick
and obtain the centered PCA we do the following:
1. Select a large value b. (See Section 3.)
2. Add b as an additional coordinate to each column of X ,

creating a new matrix Xb of size (m+1)×n.
3. Run PCA() on Xb to compute k+1 eigenvectors and

eigenvalues. Each eigenvector is of size (m+1).
4. Let λb

1 . . . , λ
b
k+1 be the eigenvalues computed in Step 3.

Then the k eigenvalues of the centered PCA are approxi-
mately λb

2 . . . λ
b
k+1.

5. Let ub
1 . . . , u

b
k+1 be the eigenvectors computed in Step 3.

Let vj be the the jth eigenvector of the centered PCA. It
is given approximately by the top m values of ub

j+1.
Clearly, the bias trick is not an improvement over the stan-
dard centered PCA algorithm. It is more costly and less ac-
curate. But, it has the advantage that it also works for cen-
tered RPCA where it does not require advanced knowledge
of the outliers. Applying the bias trick for computing cen-
tered RPCA can be achieved by using RPCA() instead of
PCA(), where RPCA() is any uncentered RPCA algorithm.

3 Correctness of the Bias Trick

The following theorem is proved in (He et al. 2019):
Theorem: Let X be the data matrix and let μ be the column
mean. For any desired accuracy of computing the centered
PCA there exists 0<ε<1 such that setting b ≥

√
1−ε2

ε ‖μ‖
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in the procedure outlined in Section 2 gives the desired ap-
proximation.

4 Experiments

Effect of The Bias Value. In the first experiment we
demonstrate that centered PCA implemented with the bias
trick returns accurate eigenvalues. The error on “iris” (from
UC Irvine) for various ε values is shown in Figure 1. Ob-
serve that for moderate values of ε the error is almost 0.
Similar results were obtained with other datasets, suggest-
ing that ε≈0.2 (or equivalently b≈5‖μ‖) may give sufficient
accuracy.
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Figure 1: Eigenvalue error with the bias trick on “iris” as a
function of ε. The error is almost 0 for ε below 0.2.

Optimal Centered Robust PCA. We describe the results
of using the algorithm of (Shah et al. 2017) with the bias
trick. The original algorithm computes optimal uncentered
RPCA. With the bias trick the algorithm computes optimal
centered RPCA. To the best of our knowledge this is the first
centered algorithm with guaranteed optimality. We refer to
this algorithm as COPT.

Tables 1 and 2 show errors for two algorithms us-
ing code provided by the authors. The values are the
average reconstruction error of the n non-outlier points:
Erpca=

1
n

∑
i ||(xi−μ)−VrpcaV

T
rpca(xi−μ)||2. Our COPT er-

ror is always smaller.

Table 1: Comparison to Outlier-Pursuit (Xu et al. 2010)

dataset k : r ε COPT Outlier-Pursuit
smoking 2:1 0.2 703.55 1159.70

wdbc 20:2 0.2 241.46 304.24
wine 5:2 0.2 14.72 15.50

Figures 2 and 3 compare the results of our COPT algo-
rithm to the results of the Outlier-Pursuit algorithm. Five
outliers were selected based on the first two principal vec-
tors. The left panel in both figures shows the location of all
the points in the plane defined by these vectors. The right
panel is the location of all the points on the plane defined by

Table 2: Comparison to CoP (Rahmani and Atia 2017)

dataset k : r ε COPT CoP
smoking 1:1 0.2 1343.00 1343.00

wdbc 17:2 0.2 252.14 498.75
wine 5:2 0.2 14.72 15.50

the first and third principal vectors. It clearly shows the out-
liers at the margins of the distribution. By contrast, in Figure
3 the outliers are not the ones farthest away. This is a further
evidence that our COPT compares favorably to the Outlier-
Pursuit algorithm.
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Figure 2: Outliers selected by our COPT algorithm
on “wine”. (Red points are the outliers, k=5, r=2,
Erpca=14.72).
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Figure 3: Outliers selected by the Outlier-Pursuit algorithm
on the centered “wine”. (Red points are the outliers, k=5,
r=2, Erpca=15.5).
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