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Abstract

The representation approximated by a single deep network
is usually limited for reinforcement learning agents. We pro-
pose a novel multi-view deep attention network (MvDAN),
which introduces multi-view representation learning into the
reinforcement learning task for the first time. The proposed
model approximates a set of strategies from multiple repre-
sentations and combines these strategies based on attention
mechanisms to provide a comprehensive strategy for a single-
agent. Experimental results on eight Atari video games show
that the MvDAN has effective competitive performance than
single-view reinforcement learning methods.

Introduction
The main intuition behind deep reinforcement learning
(DRL) is that the agent relies heavily on the observations,
which are often represented by a deep model (Mnih et al.
2015). There, the representation of the data in DRL di-
rectly determines the performance of the model. Specif-
ically, multi-view representation learning aims to exploit
the specific statistical property of each view to learn a
more comprehensive representation. Multi-view representa-
tion could improve model performance by manually gen-
erating multi-view data from the original single-view data
(Zhao et al. 2017). The nonlinear function approximator of
DRL can be regarded as the visual representation extractor
with respect to the value function.

In this abstract, we propose a novel multi-view deep at-
tention network (MvDAN) for the RL framework. The pro-
posed model overcomes the limitation of data observation
via introducing multi-view representation learning into the
value function approximation. The highlights of our model
as follows: 1) implementing collaborative learning among
multiple policies, and 2) providing a more comprehensive
final policy for the single-agent. Each view is processed
by one mapping function from states to view-specific poli-
cies, and then all the policies are combined through atten-
tion mechanisms, exploiting complementarity across multi-
ple policies. However, one of the biggest challenges is the
presence of view disagreement, which may lead to model
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Figure 1: The MvDAN consists of multi-view policy gener-
ators, an attention module and a MvGPI module.

degradation. To tackle this issue, we apply regularizations
to the view-specific policies for view consistency, thus de-
cisions are made in a multi-view aligned space. We demon-
strate that the MvDAN outperforms competitively DQN in
several Atari games.

Methodology
Multi-view RL Formulation The RL agent learns con-
trol strategy with the goal of maximizing the expected dis-
counted return at time-step t: Rt =

∑T
t′=t γ

t′−trt′ , where
γ ∈ [0, 1) is the discount factor, r ∈ R is the immediate
reward and T is the termination step. The deep Q-network
is employed as an embedding function to represent state
and approximate the Q-value from the observations s ∈ S .
The key idea is to find the embedding state representation,
which determines the mapping relationship from the state to
the action. The visual representations Ψ = {ψk(s)}Nk=1 of
each view is extracted fromN different Q-networks, and the
action-value functions is defined as:

QΠ(Ψ, a; Θ) = E [Rt|Ψt = Ψ, at = a] . (1)

The policies Π = {πk}Nk=1 are implicitly defined by their
value functions, with actions are selected by maximizing
these functions, which are denoted by QΠ = {Qπk}Nk=1.

The RL algorithms based on the value function are opti-
mized alternately between policy evaluation and policy im-
provement. The action-value function is used to evaluate the
policy, and the optimal action is selected to improve the pol-
icy by acting greedily: Π′ = argmaxaQ

Π(Ψ, a; Θ).
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Multi-view Policy Generation To generate the multiple
policies corresponding to multiple views, we minimally
modify the Q-network architecture with multiple policy net-
works to satisfy the multi-view reinforcement learning. As
shown in Figure 1, each multi-view policy generator con-
structs the mapping function from the observed state to the
view-specific action-value function. Our work focuses on
the case of the Q-networks extracts multi-view representa-
tions, as long as putting the original observation as the input
of nonlinear function approximators at the same time.

Suppose that the multi-view policy generators parameter-
ized by Θ obtain N representations Ψ given the same obser-
vation, and the action-vlaue functions are approximated by
QΠ(Ψ, a|Θ), yielding policies Π(a|Ψ;Θ). Specifically, the
optimal Q-value functions approximated by the multi-view
policy generators is written as:

Q∗(Ψ, a; Θ) = max
Π

E [ r + γmax
a′

Q∗ (Ψ′, a′; Θ) |
Ψt = Ψ, at = a,Π ] .

(2)

Attention Based Policy Integration Due to the given same
observation, the action-value functions generated by the
multi-view policy generators are complementary. We ap-
ply the attention mechanism to model the complementarity
across multiple views. The attention module is utilized to
assign the attention weights,

wk =
exp

(
Qπk

)

∑N
i=1 exp

(
Qπi

) , k ∈ {1, 2, · · · , N}, (3)

which automatically determines the importance of view-
specific action-value function. Then we integrate multi-view
strategies at the decision level through element-wise product
operation and obtain a comprehensive action-value function,

Qπmv

=

N∑
i=1

(
wiQπi

)
. (4)

Multi-view Generalized Policy Improvement We extend
general policy improvement to multi-view generalized pol-
icy improvement (MvGPI), which uses a set of policies to
implement the policy improvement. The MvGPI achieves
the goal of co-learning based on the complementarity across
multi-view policies.

Let {πk}Nk=1 be N decision policies under each view and
let {Qπk}Nk=1 be approximations of action-value function,
respectively. The MvGPI follows ε-greedily and guides the
agent to select the optimal action with the highest Q-value:

πmv = argmax
a

Qπmv

, (5)

where Qπmv

is the final action-value function, which yields
a final policy. Moreover, we utilize consistency to add reg-
ularizations between each pair of view-specific action-value
functions. To achieve this, we force each action-value func-
tion to make the same decision by adding a penalty term,

δ =
∣∣∣Qπu

(ψu, a; θu)−Qπv

(ψv, a; θv)
∣∣∣ . (6)

Table 1: The average total reward (±std ) on Atari games.

Pong MsPacman Seaquest Q*bert

DQN −13.8 (±4.0) 56.6 (±13.0) 14.4 (±5.5) 18.1 (±6.2)
MvDAN −11.1 (±2.2) 75.4 (±11.1) 21.6 (±7.2) 17.8 (±3.2)

Gopher Atlantis BeamRider Breakout

DQN 68.0 (±23.2) 17.7 (±6.5) 17.9 (±3.4) 25.6 (±8.9)
MvDAN 75.9 (±20.3) 30.0 (±14.8) 15.7 (±3.7) 22.3 (±4.8)

(a) Pong (b) MsPacman (c) Seaquest (d) Q*bert

Figure 2: The average reward per episode on Atari games.

(a) Pong (b) Seaquest (c) Pong (d) Seaquest

Figure 3: The left two plots show the average maximum
view-specific Q-value per epoch, and the right two plots are
the average loss per epoch, respectively.

Empirical Experiments and Results
The performance is illustrated in Table 1 and Figure 2, and
we improvement MvDAN on eight Atari 2600 video games
with two view representations in all experiments. Several
observations are obtained as follows: 1) Overall, MvDAN is
significantly better than DQN on most benchmark games. 2)
Figure 2(d) shows that MvDAN has a smaller standard de-
viation, which reflects the stability of our model. 3) Further-
more, Figure 3 illustrates faster convergence against DQN.
This is mainly due to the introduction of constraint between
multi-view policies to maintain consistency of decisions.

Conclusion
In this abstract, we proposed MvDAN which generates
multi-view policies in a novel multi-view learning setting.
We have demonstrated the superiority of our method by
the effectiveness of multi-view representation on decision-
making and the competitive performance of the model.
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