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Abstract

To tackle the problem of limited annotated data, semi-
supervised learning is attracting attention as an alternative
to fully supervised models. Moreover, optimizing a multiple-
task model to learn “multiple contexts” can provide better
generalizability compared to single-task models. We propose
a novel semi-supervised multiple-task model leveraging self-
supervision and adversarial training—namely, self-supervised,
semi-supervised, multi-context learning (S4MCL)—and ap-
ply it to two crucial medical imaging tasks, classification
and segmentation. Our experiments on spine X-rays re-
veal that the S4MCL model significantly outperforms semi-
supervised single-task, semi-supervised multi-context, and
fully-supervised single-task models, even with a 50% reduc-
tion of classification and segmentation labels.

Introduction

Depending on how unlabeled data are leveraged, semi-
supervised learning can be accomplished in several ways,
and this has recently emerged as a growing body of re-
search, yielding schemes such as unsupervised domain adap-
tation (Zhang et al. 2019), self-supervised learning (Jing
and Tian 2019), adversarial learning (Imran and Terzopou-
los 2019a), and multi-task learning (Ruder 2017). We pro-
pose a self-supervised, semi-supervised, multi-context learn-
ing (S4MCL) model that combines the advantages of self-
supervised learning, adversarial learning, and multi-task
learning for use in real-world applications. To demonstrate
its effectiveness, we apply our model to two of the most
important tasks in medical imaging—disease classification
and segmentation of anatomical structures—and both tasks
are tackled by the same model, thus satisfying the clinical
need to label an image as normal or abnormal as well as to
segment the relevant anatomical structures that are imaged.

Methods

To formulate the problem, we assume an unknown data dis-
tribution p(X,Y, Z) over images X , segmentation labels Y ,
and class labels Z. The model has access to the labeled train-
ing set DL sampled i.i.d. from p(X,Y, Z) and unlabeled
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Figure 1: Our S4MCL model. A segmentation mask gen-
erator produces masks from inputs of labeled or unlabeled
samples. A discriminator takes concatenated inputs of la-
beled data-mask or unlabeled data-mask pairs and predicts
the class labels. With the labeled data branch, it is super-
vised. By contrast, unlabeled data is self-supervised based
on self-generated labels using a transformation function t(x).
Segmentation output is obtained from the decoder (Dec) and
classification output is received at the discriminator (Disc).

training set DU sampled i.i.d. from p(X) after marginaliz-
ing out Y and Z. Two networks, S and C, are trained in an
adversarial learning fashion, such that the mask generator S
and the class discriminator C compete against each other. We
specify the objective as two losses: minφC

LC(L(DL, φC) +
αL(DU , φC)) and minφS

LS(L(DL, φS) + αL(DU , φS)),
where φC and φS are the parameters of networks C and S,
respectively.

For the classification, we use a transformation function
t(x) to make random flipping (horizontal/vertical) or rota-
tion (0, 90, 180, etc.) for the unlabeled images and let the
network C predict them. S’s supervised loss is just based
on the labeled samples (at pixel-level). We employ the gen-
eralized Dice loss in this regard. LS includes segmentation
loss and adversarial prediction loss. Since the main objective
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Table 1: Performance comparison of our S4MCL model
against the baselines in different data settings with varying
percentages of labeled data: accuracy (Acc) for classification
and Dice score (DS) for segmentation have been reported.

Single-Task Multi-Task
Model Acc DS Model Acc DS Model Acc DS

CNN-5 0.420 0.702 S2MCL-5 0.420 0.500 S4MCL-5 0.630 0.890
CNN-10 0.450 0.874 S2MCL-10 0.460 0.640 S4MCL-10 0.670 0.907
CNN-20 0.460 0.903 S2MCL-20 0.500 0.672 S4MCL-20 0.680 0.921
CNN-30 0.500 0.910 S2MCL-30 0.550 0.752 S4MCL-30 0.740 0.925
CNN-50 0.620 0.919 S2MCL-50 0.670 0.889 S4MCL-50 0.800 0.934

CNN-100 0.780 0.931

of S is to generate the segmentation map, a small weight
(0.01) is used for the adversarial loss terms. C is trained on
multiple objectives—adversary on the segmentation mask
generator S’s output and classification of the images into the
real or surrogate classes. For the labeled examples, we calcu-
late two-way losses from image-label and image-prediction
pairs, which differs from the unlabeled examples, where only
image-prediction pairs are taken into account. The unsuper-
vised adversarial loss terms include adversarial losses for the
labeled and unlabeled data. LC includes supervised classifica-
tion loss on (ẑl|xl, yl), self-supervised classification loss on
(ẑu|xu, ŷu), adversarial real loss on (xl, yl), and adversarial
prediction losses on (xl, ŷl) and (xu, ŷu).

Experimental Evaluation

We use 894 patches extracted from 100 spinal X-Rays
with vertebrae masks obtained from a vertebral compres-
sion fracture study of osteoporosis (Wong and McGirt 2013).
The patches are split into three subsets: training set (713),
validation set (42), and testing set (139). our S4MCL is
compared against baseline models—semi-supervised multi-
context learning (S2MCL), conv-net (U-Net) for segmenta-
tion (Ronneberger, Fischer, and Brox 2015), and conv-net for
classification. All the images are normalized and resized to
128×128×1 before feeding them to the models. We use a U-
Net-like encoder-decoder network with skip connections as
the segmentation mask generator and another convolutional
network as the class discriminator (Imran and Terzopoulos
2019b).

Our S4MCL model performs better than all the baseline
semi-supervised and fully-supervised models both in the seg-
mentation of vertebrae and predicting the fractured ones (Ta-
ble 1). Its consistently good performance with a varying
proportion of labeled training data confirms the robustness
of our S4MCL model. Visualization of segmented vertebra
boundaries by different models under various labeled data
proportions (Fig. 2) reveals the superiority of our model.

Note that for a fair comparison of all the models, we use
a common segmentation architecture in single-task for seg-
mentation and in multi-task for segmentation mask genera-
tor. Our S4MCL model proves to have a consistently better
performance than the semi-supervised and fully-supervised
single-task segmentation (U-Net) model, given the same pro-
portion of labeled training data (|DL|). The advantage really
accrues with the knowledge gain from the larger portion of
unlabeled data and multi-context learning.
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Figure 2: Boundary visualization of a predicted vertebra mask
showing the superiority of our S4MCL model with a varying
proportion of labeled data.

Conclusions

Learning from small labeled datasets have been one of the
most challenging tasks in computer vision and medical imag-
ing. We proposed a novel self-supervised, semi-supervised,
multi-context learning (S4MCL) model, which we validated
through medical image classification and segmentation ex-
periments with limited labeled data. Our experimental results
confirmed the superiority of our S4MCL model over semi-
supervised and fully-supervised single-context and multi-
context models.
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