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Abstract

We present a novel online algorithm that learns the essence
of each dimension in word embeddings. We first mask di-
mensions determined unessential by our algorithm, apply the
masked word embeddings to a word sense disambiguation
task (WSD), and compare its performance against the one
achieved by the original embeddings. Our results show that
the masked word embeddings do not hurt the performance and
can improve it by 3%.

Introduction

Contextualized word embeddings generate different embed-
dings for the same word type with different topical senses. In
this work, we propose an algorithm that learns the dimension
importance in representing sense information by minimiz-
ing the distance between sense groups. The effectiveness of
our approach is validated by a word sense disambiguation
task (WSD) that aims to distinguish the correct senses of
words under different contexts, as well as two intrinsic evalu-
ations of embedding groups on the masked embeddings. A
full-length paper of our work is available 1.

In previous embedding interpretation work, matrix trans-
formation has been widely used (Zobnin 2017; Park, Bak,
and Oh 2017). Others apply sparse encoding techniques and
map embeddings to sparse vectors to increase vector inter-
pretability (Subramanian et al. 2018; Arora et al. 2018). In
this work, a novel idea where the information contained in
dimensions of word embeddings is evaluated from a pure
machine learning perspective. Three popular word embed-
ding algorithms are used for our experiments: ELMo (Peters
et al. 2018), Flair (Akbik, Blythe, and Vollgraf 2018), and
BERT (Devlin et al. 2019).

Sense Weight Training (SWT)

With word embedding groups classified by their senses anno-
tated in the SemCor dataset (Miller et al. 1994), the objective
is to maximize the average pair-wise cosine similarity in
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sense groups. A weight matrix (size of embedding) is initial-
ized for each sense and each dimension corresponds to the
importance of the embedding dimension to that sense.

Algorithm 1 Algorithm for the incremental Sense Weight
Training. n is the number of epochs for exploration, λ the
parameter for l1 regularization and ε a small number.

for each sense group SG do
initialize weights w, learning rate γ0, Adagrad weights
matrix gti
initialize Spre

Spre ←
∑

vi,vj∈SG,i�=j Cosine(vi, vj)

for each epoch i do
if i < n then

randomly generate N numbers:
D1, · · · , DN

else
generate N numbers based on policy:
D1, · · · , DN

end if
vi[D1, · · · , DN ]← 0 for vi ∈ SG
Scur ←

∑
vi,vj∈SG,i�=j Cosine(vi, vj)

grad = (Spre − Scur) ∗ (mask − 1)− λ ∗ sign(w)
gti += grad2

w ← w + grad ∗ γi
ε+
√
gti

end for
end for

During training, a mask matrix is applied, which is the size of
the weight matrix and has N zeros with the rest ones. The gen-
eration of the mask matrix involves first randomly generating
N positions of zeros to ensure enough dimensions have been
covered and then employing an exploration-exploitation
policy: there is a chance of α to randomly generate N num-
bers and for the rest 1− α probability, the higher weight the
dimension number has, the lower probability of the number
getting selected. Furthermore, l1 regularization is applied for
feature selection purpose, and AdaGrad is used to encourage
convergence.
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Experiments

SWT algorithm is evaluated by comparing the WSD perfor-
mances of masked and unmasked embeddings. In this work,
the embedding dimensions with weight value ranked below
5% are marked to zero. KNN method is used with an evalua-
tion framework (Raganato, Camacho-Collados, and Navigli
2017). The embeddings from all output layers of ELMo,
BERT and Flair are evaluated. Table 1 proves that for ELMo
and Flair-2048, masking does not hurt the performance too
much and for single layers, it even shows improvements. Fig-
ure 1 shows a performance boost for the last 10 layer outputs.
Surprisingly, the last layer output score is boosted by 3%.

Model Original Masked

Flair-4096 63.7 62.1
Flair-2048 60.5 60.7

BERT 67.3 64.5
ELMo 63.8 63.0

ELMo-256 61.5 62.3
ELMo-512 62.7 63.0

ELMo-1024 62.5 63.4

Table 1: Results for the original and embeddings with 5%
dimensions masked.

Figure 1: BERT-Large results from the last 12 hidden layers.

The Spearman’s Rank-Order Correlation Coefficient ρ be-
tween the pair-wise cosine similarity of sense vectors (av-
erage embedding of embedding groups classified by word
senses) and the pair-wise path similarity scores between
senses provided by WordNet (Landes, Leacock, and Fell-
baum 1998) is evaluated. Average pair-wise cosine similarity
within sense groups is also calculated before and after. Over-
all, the average cosine similarities within sense groups all
increase after dimensions are masked out for all models. The
correlation test shows no significant performance decrease
(some even increase), which manifests that the masked di-
mensions do not contribute to the sense group relations.
Table 2 contains the number of dimensions masked averaged
throughout all sense groups. For ELMo and Flair, the masked
groups show a better correlation score. For the ELMo models,
the number of embeddings that can be discarded increases
with the distance of the output layer to the input layer. This
result corresponds to ELMo’s claim that the embeddings
with output layers closer to the input layer are semantically
richer (Peters et al. 2018).

Model Dim Nmasked ρoriginal ρmasked

BERT 768 125 0.26814 0.26286
BERT 1024 146 0.27423 0.26575
ELMo 256 218 0.2852 0.3042
ELMo 512 281 0.29577 0.36943
ELMo 1024 608 0.28406 0.30675

Flair 2048 670 0.24891 0.28516

Table 2: Correlation coefficient test results

Conclusion
This paper demonstrates a novel approach to interpret word
embeddings. A conclusion can be drawn from the results that
some dimensions can be determined to have little contribution
to the representation of sense groups by our algorithm. There
are several limitations to this work. First, for the evaluation,
the path similarity used may not be the best to fit human
judgements. Second, the current tests were limited by the
dataset corpus mentioned. For future works, the applications
of the algorithm can theoretically be applied to other grouped
embeddings, which would require more explorations.
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