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Abstract

In a real-time strategy (RTS) game, StarCraft II, players need
to know the consequences before making a decision in com-
bat. We propose a combat outcome predictor which utilizes
terrain information as well as squad information. For training
the model, we generated a StarCraft II combat dataset by sim-
ulating diverse and large-scale combat situations. The overall
accuracy of our model was 89.7%. Our predictor can be inte-
grated into the artificial intelligence agent for RTS games as
a short-term decision-making module.

Introduction

Real-time strategy (RTS) games attract the attention of ar-
tificial intelligence (AI) researchers. StarCraft II is an RTS
game where players destroy opponents’ bases to win, with
elaborate tactics and orders. Combat decision-making is dif-
ficult because an agent must consider factors such as the
unit-compositions, the fog of war, and where to fight. It
is important to anticipate the result of a battle between a
player’s units and opponent’s units on various battlefields.

Preceding StarCraft II combat prediction models include
the clustering army analyzer (Synnaeve and Bessière 2012),
the global state evaluator (Erickson and Buro 2014), and the
neural-network machine (Sánchez-Ruiz 2015). There is a
StarCraft combat simulator, SparCraft (Churchill and Buro
2013), which efficiently simulates combats by simplifying
unit collisions. Nonetheless, it is hard to simulate the ef-
fects of terrains accurately because the fog of war and ramp
visions are not implemented. Uriarte and Ontañón (2018)
evaluated the performance of combat models such as life-
time damage (LTD) model (Churchill, Saffidine, and Buro
2012), lanchester model (Stanescu, Barriga, and Buro 2015),
decreasing/suspended damage per frame (DPF) model (Uri-
arte and Ontañón 2015). However, those combat models do
not include factors of terrains.

Figure 1 shows the structure of our model, BattleNet,
which has two submodels: SynergyNet (left) and Terrain-
Net (right). An input of SynergyNet is a squad combination,
and an output is a squad synergy. Both input and output are
a vector form. The input is represented as a squad vector
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Figure 1: BattleNet, a combination of SynergyNet (left) and
TerrainNet (right).

that each element represents the type of units in a squad,
and the value of each element represents the number of the
given unit type. The output vector represents a synergy of the
given squad. TerrainNet takes the terrain information and the
synergies of each confronting squads and gives a prediction
of the combat outcome. The terrain information is a one-hot
encoded vector. Two synergy vectors are made from Syn-
ergyNet. Then TerrainNet gives a prediction of the combat
outcome, based on the two synergy vectors and a terrain vec-
tor.

Experiment

For the experiment, we created a StarCraft II combat simula-
tor which generates combat outcome dataset. The simulator
generates two random squads, makes combat in a selected
battlefield for five times, and records a winning rate of the
combat. Equation (1) measures the winning rate. The num-
ber of the dataset is 15000 for each terrain. These datasets
are separated into 60%, 20%, and 20% for the training set,
validation set, and test set respectively.

pwin =
nwin + 0.5× ndraw

nwin + ndraw + nloss
(1)

Among the professional league maps of StarCraft II, we
selected the categories of terrains that can represent most of
the battlefields: plain, alley, narrow ramp, long alley, bush,
two bushes, wide ramp, and foggy. A map can have several
regions that fall into one of the categories. Plains have no
special features such as obstacles, ramps, and alleys. Ramps
have the high ground, the low ground, and a ramp that con-
nects between them, while alleys have two grounds, and a
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Baseline– Baseline+ BattleNet

Squad (nU ) 29 29 29
Synergy (nS) - - 32
Terrain (nT ) 0 8 8
FC (nF (1,2)) 512 512 256 / 512
#Layers (nL(1,2)) 10 10 5 / 5

Table 1: Hyperparameters. nU , nS , nT , nF (1,2) are the num-
ber of features in one squad vector, one synergy vector, one
terrain vector and one fully-connected layer, respectively.
nL(1,2) is the number of fully-connected layers.

narrow path between them. Bush-terrain is where units out-
side cannot see opponents’ units inside, but units inside can
see both inside and outside. Foggy-terrain is similar to bush,
except that units inside the fog have very small sight range,
so they can only see units right next to themselves.

All moving ground units which can attack ground units
were included in the simulation. Air units were excluded be-
cause their action is uninfluenced by the map’s terrain. Total
29 types (Zerg 8, Terran 11, Protoss 10) of units are used.

In order to simulate diverse large-scale combat situations,
we made a restriction of maximum resources and number of
unit types. The total resource of forming a squad should not
exceed 10000 minerals, 5000 gases, and 150 supplies. The
supply limit is 150, which is 50 less than a player’s max-
imum supply limit (200), assuming the player reserved 50
for workers. Assuming a one versus one game, all units in
each squad have the same race. Unit compositions are de-
termined by first assigning the total resource to unit types in
the ratio of p, where p ∼ Dir(α) with α = (1, 1, . . . , 1),
and then constructing a squad with the maximum number of
units from the assigned resources.

Results and Conclusion

The aforementioned experiment attributes were applied to
three outcome prediction models (Baseline–, Baseline+, and
BattleNet), which were trained and tested with the gener-
ated combat dataset for ten times. Baseline+ is a deep neural
network (DNN) with squad and terrain information given,
while Baseline– has squad information only. Hyperparame-
ters are in Table 1. In 200 epoch of training, we used Adam
optimizer and Binary Cross-Entropy loss with a learning rate
= 1e-4 and a batch size = 1000. After 10 trainings and test-
ings, the average accuracy of predicting combat outcomes on
eight terrains is shown in Table 2. BattleNet showed the best
accuracy regardless of battlefields, followed by Baseline+
and Baseline–. Additional terrain information increased the
accuracy, considering Baseline+’s 9.2%p better overall ac-
curacy than Baseline–’s. The overall accuracy of BattleNet
is 89.7%, which is 2.0%p better than the Baseline+.

We presented a new combat outcome predictor module
for StarCraft II. We generated StarCraft II combat dataset
and proposed a model, BattleNet, which utilizes the battle-
field information. On the dataset of large-scale combat sim-
ulation, the accuracy of BattleNet was 89.7%. With the ter-
rain analysis tool, our combat outcome predictor can be im-

Battlefields Baseline– Baseline+ BattleNet

Plain 0.831 0.880 0.901
Alley 0.748 0.890 0.914
Narrow ramp 0.785 0.891 0.917
Long alley 0.758 0.879 0.905
Bush 0.782 0.870 0.890
Two bushes 0.789 0.820 0.830
Wide ramp 0.841 0.892 0.902
Foggy 0.778 0.894 0.918

Overall 0.789 0.877 0.897

Table 2: The average accuracy of models.

plemented as a module of the StarCraft II artificial intelli-
gence agent, with additional decision-making modules for
long-term problems such as operation and build order.
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