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Abstract

This paper presents a systematic way of decomposing a limited
memory influence diagram (LIMID) to a tree of single-stage
decision problems, or submodels and solving it by message
passing. The relevance in LIMIDs is formalized by the notion
of the partial evaluation of the maximum expected utility,
and the graph separation criteria for identifying submodels
follow. The submodel decomposition provides a graphical
model approach for updating the beliefs and propagating the
conditional expected utilities for solving LIMIDs with the
worst-case complexity bounded by the maximum treewidth of
the individual submodels.

Introduction
The sequential decision making under uncertainty is an im-
portant class of problems that asks for the optimal strategy
of a rational agent that interacts with a system in sequence
by intervening in the system dynamics and observing the
partial state to achieve the maximum total expected utility.
The original influence diagram (Howard and Matheson 2005)
was a compact representation for the decision tree that as-
sumed no-forgetting agent, and a linear order on decisions.
(Lauritzen and Nilsson 2001) introduced a limited memory
influence diagram (LIMID) that generalizes IDs by introduc-
ing the notion of relevance and dropping the perfect recall
assumption. From the game-theoretical perspective, a LIMID
represents a single-player game under imperfect informa-
tion and imperfect recall by using a Bayesian network for
updating the beliefs while searching for the multi-selves equi-
librium. Recent approaches for solving IDs are relying on
valuation algebra (Jensen, Jensen, and Dittmer 1994; Mauá,
de Campos, and Zaffalon 2012). However, (Dechter 2000;
Pralet, Schiex, and Verfaillie 2006) showed that the con-
strained induced width could be tightened by exploiting the
algebraic structure. For solving LIMIDs, (Lauritzen and Nils-
son 2001) proposed a single policy update algorithm that
solves a subclass of LIMIDs called soluble LIMIDs. (Mauá,
de Campos, and Zaffalon 2012) presented the optimal algo-
rithm for solving LIMIDs by using the valuation algebra.
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Limited Memory Influence Diagrams
A LIMID M consists of the chance variables XC associated
with the conditional probability functions {PCi

|Ci ∈ XC},
the decision variables XD associated with the policy func-
tions {ΔDi |Di ∈ XD}, and a set of utility functions U
defined over the chance or decision variables. A directed
acyclic graph G of M represents the functions by directed
arcs, where the parents of a node X denoted by pa(X) en-
code conditioning variables for the probability functions or
scope of the utility functions. The pa(D) for a decision vari-
able D defines the observed random variables for making
decision D, hence it encodes a precedence relation denoted
by OD ≺ {D}. Graphically, chance variables are drawn as
circles, decision variables are squares, and the utility func-
tions are diamonds as shown in Figure 1. The task of solv-
ing LIMIDs is computing the maximum expected utility,
MEU := maxΔΔΔ E[

∑
Ui∈U Ui], and finding the optimal strat-

egy ΔΔΔ∗ achieving the MEU under the imperfect recall.

Relevance and Graph Separation in LIMIDs
Let’s define the partial evaluation of M with respect to a
pair (D,U) of a decision variable and a utility function as a
locally maximum expected value of U obtained by perturb-
ing Δ(D|OD), i.e., maxΔ′

D
E[U |ΔΔΔ\{ΔD}∪{Δ′

D}]. Then
the relevant utility functions for a decision D denoted by
RELU (D), the relevant observed variables for a pair of a
decision D and a relevant utility U denoted by RELO(D,U),
and the relevant hidden variables denoted by RELH(D,U)
can be defined as a subset of the variables and functions of M
that induces any change in the locally optimal policy Δ∗

D or

Figure 1: A 3 stage LIMID.
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Figure 2: Submodel decomposition. Shaded nodes are rele-
vant sets and dashed arrows are the partial history in memory.

the partial evaluation. We also define a submodel M′(D,U)
for the partial evaluation with respect to a pair (D,U) as
a projection of M on RELO(D,U) ∪ RELH(D,U). It is
straightforward to extend the above definitions over a set
of decisions or utility functions. If RELH(D,U) includes
another decision variable D′, then the partial evaluation of
M′(D,U) depends on the local policy function ΔD′ , which
requires expanding the submodel to M′({D,D′}, U) and
jointly optimizes multiple policy functions, or searches for
the equilibrium over the multiple decisions. We say a sub-
model is stable if its RELH(D,U) is free of other decision
variables, and a locally optimal policy function computed by
a stable submodel is globally optimal.

Identifying a stable submodel by the perturbation analy-
sis is sound and complete, but it does not lead to efficient
algorithms. Therefore, we use basic graph separation criteria
(Pearl 2009) such as the d-separation, the back-door set for
a pair of variables (X,Y ) denoted by BD(X,Y ), and the
front-door set denoted by FD(X,Y ) to identify the relevant
sets. The RELU (D) is the set of utility nodes that are descen-
dants of XD and not d-separated from D given OD (Nielsen
2002), the RELO(D,U) is a subset of OD that remains as
a BD(D,U) after removing non-requisite observations, and
the RELH(D,U) is a subset of hidden variables that is an
element of any FD({D} ∪ RELO(D), U).

Submodel Decomposition
Unlike IDs with the perfect recall, LIMIDs may not have a
total order on decision variables. A decision node is extremal
(Lauritzen and Nilsson 2001) if its relevant information set
blocks all the influences from other decisions to its relevant
utility functions. A LIMID is soluble when there exists a total
extremal order on the decision variables. For solving insolu-
ble LIMIDs, we offer a partial solution ordering scheme. We
first define two operations on two submodels M1(D1,U1)
and M2(D2,U2) of a M(XD,U).

Definition 1 (Combining and marginalizing submodels).

1. Combination: Given two submodels M1(D1,U1) and
M2(D2,U2) we define M′(D′,U′) := M1(D1,U1)⊗
M2(D2,U2) as a submodel generated by merging two
submodels, i.e., D′ = D1 ∪ D2, and U′ = RELU (D′).
While merging two submodels, we also add informa-
tional arcs from all the nodes from RELI(D′,U′) =
RELI(D1,U1) ∪ RELI(D2,U2) to ∀Di ∈ D′.

2. Marginalization: ⇓M2(D2,U2) M1(D1,U1) is a
submodel M′(D′,U′) with D′ = D1 \ D2 and
U′ = RELU (D1 \D2) ∪ {V }, where V is a new

value node inserted to the model for the condi-
tional maximum expected utility of M2 defined by
maxΔ(D2|pa(D2)) E[

∑
Ui∈RELU (D2)

Ui|pa(D2)].

Proposition 1 (Submodel elimination by a partial solution
ordering OD). Let 〈Mk〉Tk=1 be a sequence of submodels
of M and 〈Gk〉Tk=1 be a sequence of the DAGs of Mk with
MT = M and GT = G. The partial solution ordering
OD := 〈Dk〉Tk=1 is a sequence of disjoint subsets of XD such
that: (1) ∪Tk=1Dk = XD, (2) Mt−1(∪t−1

k=1Dk) =⇓M′(Dt)

Mt(∪tk=1Dk), (3) RELH(Dt,RELU (Dt))∩(XD\Dt) = φ.
Definition 2 (Submodel tree decomposition T of M). Given
M and its partial solution ordering OD generated along
with 〈Mk〉Tk=1 and 〈Gk〉Tk=1 , the submodel tree decompo-
sition is a triple T := 〈T, χ, ψ〉, where T = (C,S) is an
oriented tree, and two labelling functions χ and ψ map a
node C ∈ C to a subset of decision variables in the parti-
tion χ(C) = Dk ∈ OD and its submodel ψ(C) = M′(Dk)
of Mk. A directed edge (Ci, Cj) ∈ S connects two nodes
if RELO(χ(Ci)) ⊆ Xψ(Cj) where Xψ(Cj) is the set of all
variables of the submodel ψ(Cj).

The submodel tree decomposition facilitates computing
the MEU and the optimal strategy of LIMIDs. The message
passing algorithm propagates a conditional expected utility
between clusters, where each cluster partially evaluates a
stable submodel by using probabilistic graphical model infer-
ence algorithms. The space and time complexity is exponen-
tial in the maximum treewidth of the individual submodels.
The submodel tree decomposition provides a graphical model
approach for decomposing LIMIDs, and lower complexity
submodel graph decompositions can follow by relaxing the
exact tree decomposition in various ways.
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