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Abstract

Reverse Engineering has been an extremely important field in
software engineering, it helps us to better understand and an-
alyze the internal architecture and interrealtions of executa-
bles. Classical Java reverse engineering task includes disas-
sembly and decompilation. Traditional Abstract Syntax Tree
(AST) based disassemblers and decompilers are strictly rule
defined and thus highly fault intolerant when bytecode ob-
fuscation were introduced for safety concern. In this work,
we view decompilation as a statistical machine translation
task and propose a decompilation framework which is fully
based on self-attention mechanism. Through better adaption
to the linguistic uniqueness of bytecode, our model fully out-
performs rule-based models and previous works based on re-
currence mechanism.

Motivation

In order to build a fault-tolerant decompiler, we need to take
both the lexical and structural (syntactic) information into
consideration. Specifically, we need to combine the lexi-
cal information extracted from the bytecode with the corre-
sponding structural information to form grammatically read-
able source code. In our work, we view reverse engineering
as a statistical machine translation task instead of rule-based
task and propose a fault-tolerant Java decompiler based on
self-attention mechanism. Although decompilation of pro-
gramming language appears similar to machine translation
of natural language, they are actually different in many
ways, which are as:

1. Syntax Structure: Programming language is rigorously
structured (Hellendoorn and Devanbu 2017; Hu et al.
2018) that any obfuscation in source bytecode is signifi-
cant enough to make an AST based decompiler invalid.

2. Word Unit: Programming language is less likely to suf-
fer from out-of-vocabulary problem since its vocabulary
size is relatively small and can be exhaustively learned.

3. Vocabulary Distribution: The frequency distribution of
words in the vocabulary of programming language is
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Table 1: Comparison of languages in terms of entropy and
redundancy

Language Entropy (bit) Redundancy (%)

Natural Language (English) 11.82 0.09
Source Code 6.41 0.40

Bytecode 5.31 0.28

large in variance. Specifically, it is comparatively lower
in entropy, larger in redundancy and suffers from unbal-
anced distribution of information. The detail is illustrated
in Tabel 1 .

It is apparent that the programming languages in our dataset,
either source code or bytecode has an extremely unbalanced
distribution of information in vocabulary. Concretely, struc-
tural information like keywords, which only account for
0.4% of the vocabulary, significantly contribute about 9%
to the overall redundancy.

Methodology and Experiments

To handle the above mentioned problems, previous works
have applied the recurrence and attention mechinasm in
NMT model (Luong, Pham, and Manning 2015). While we
propose fully basing our model on self-attention mechanism
introduced by Transformer (Vaswani et al. 2017) model can
better adapt to the linguistic uniqueness of programming
language. The experiment mainly consists of three parts:
1. Data Preprocessing: We first crawl the original parallel

corpus from Java 11 API offered by Oracle1 and reflect
them from the local packages with Java reflection mecha-
nism. Finally compile them into corresponding bytecode
with format templates.

2. Purification: In order to boost the potential of recur-
rence based model and better compare it with attention
based model, we attach a manual purification step for it.
Specifically, this step helps to acquire the purified dataset
by removing a large proportion of structural informa-
tion, which significantly alleviates the vanishing gradient
problem of recurrence based model.
1https://docs.oracle.com/en/java/javase/11/docs/api/index.html
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Figure 1: Performance of attention-based NMT and Transformer models on the purified and redundant dataset with salt-and-
pepper noise introduced. The unit error probability of the noise ranges from 1% to 20%.

3. Training and Evaluation: We evaluate our model on
three tasks, including: overall performance of decom-
pilation on purified and redundant datasets, fault toler-
ance and the impact of different word segmentation algo-
rithms.

Table 2: Performance of attention-based NMT and Trans-
former models on the purified and redundant datasets

TASK BLEU-4(%) WER(%)

NMT purified 91.50 3.87
Transformer purified 92.30 3.48

NMT redundant 27.80 65.53
Transformer redundant 94.50 2.65

Overall Performance As Table 2 illustrated, the perfor-
mance of attention-based NMT and Transformer are similar
on the purified dataset. However, Transformer completely
outweighs attention-based NMT on the redundant dataset
since attention is only used as an auxiliary measure to allevi-
ate the vanishing gradient problem of NMT and is only pow-
erful enough to help it learn the structural information but
not the lexical information. Therefore, we concluded that at-
tention mechanism can better adapt to the linguistic unique-
ness of programming language than recurrence mechanism.

Fault Tolerance We perform experiments on test set with
salt-and-pepper noise introduced to demonstrate the fault-
tolerance of our model. The unit error probability (UEP) of
the noise ranges from 1% to 20%. As Figure 1 illustrated,
Transformer presents strong fault-tolerance on both the puri-
fied and redundant datasets. Whereas, attention-based NMT
compromised quickly with the increase of UEP. Conclu-
sively, Transformer is much more robust and stabilized than
attention-based NMT on the obfuscated decompilation task.

Impact of Word Segmentation We evaluate the perfor-
mance of Transformer on purified dataset with different
word segmentation algorithms, including space delimiter
and subword model based on byte pair encoding (BPE). As

Table 3 illustrated, using space delimiter for word segmen-
tation performs better than using subword model by both
metrics. It is because programming language has a rela-
tively small and exhaustive vocabulary, thus less likely to
encounter out-of-vocabulary problem.

Table 3: Impact of different word segmentation algorithms

ALGORITHM BLEU-4(%) WER(%)

space delimiter 92.30 3.48
subword model based on BPE 87.15 5.74

Conclusion and Future Work
In this paper, we propose a statistical, self-attention based
Java decompiler and compare it with previous works based
on recurrence mechanism. Experimental results demonstrate
that our approach not only performs well on common de-
compilation task, but also presents strong fault-tolerance and
robustness when bytecode obfuscation were introduced.

For the future work, we plan to perform experiments on
our model with longer, more randomized code snippets from
real-world scenarios with more complex obfuscations intro-
duced in order to further verify its robustness and get better
prepared for practical use.
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