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Abstract

Variational autoencoders (VAEs) have been a successful ap-
proach to learning meaningful representations of data in an
unsupervised manner. However, suboptimal representations
are often learned because the approximate inference model
fails to match the true posterior of the generative model, i.e.
an inconsistency exists between the learnt inference and gen-
erative models. In this paper, we introduce a novel consis-
tency loss that directly requires the encoding of the recon-
structed data point to match the encoding of the original data,
leading to better representations. Through experiments on
MNIST and Fashion MNIST, we demonstrate the existence
of the inconsistency in VAE learning and that our method can
effectively reduce such inconsistency.

Introduction

Variational autoencoders (VAEs, (Kingma and Welling
2013)) are a popular generative model pθ(x|z)p(z) that aims
to summarise the regularities of a given dataset DN =
{x1, · · · ,xN} in a low dimensional latent space z. Utiliz-
ing variational inference, VAEs introduce an approximate
inference model qφ(z|xi) and is able to replace the often
intractable data likelihood objective

∫
pθ(x|z)p(z)dz in the

generative models by an alternate evidence lower bound
(ELBO) objective. The optimal ELBO will only be reached
when the approximate inference model matches the true in-
ference model, i.e. qφ(z|xi) = pθ(z|xi) = pθ(x|z)p(z)∫

pθ(x|z)p(z)dz ,
and this indicates that the best explanation of the given
dataset in the target latent space will only be obtained if a
consistent auto-encoding process can be found.

However, various works have shown that VAEs often de-
liver a sub-optimal inference model that does not match
with the generative model completely, leading to inaccurate
representation of the observed data in the latent space and
worse generation quality (Cremer, Li, and Duvenaud 2018).
Many works have been proposed to indirectly mitigate such
effects by using either a more expressive inference model
qφ(z|xi) (Rezende and Mohamed 2015; Kingma, Salimans,
and Welling 2016; Ranganath, Tran, and Blei 2016) or a
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Figure 1: Our proposed encoder-decoder matching loss.

more flexible model for the prior p(z) (Dilokthanakul et al.
2016; Tomczak and Welling 2018).

Different from the aforementioned works, we directly
measure the degree of inconsistency between the inference
and the generative models through the drift in the latent
space if the decoded data points are encoded again using the
learnt inference model, as shown in Figure 1. We then pro-
pose to reduce the inconsistency by minimizing such drifts
together with the VAE ELBO objective. Our solution in-
troduces no additional parameters to the original VAE al-
gorithm. Further, our proposed objective is in fact a lower
bound to the original ELBO loss and the optimum is ob-
tained when the ELBO approaches the data log likelihood,
so the original VAE’s learning objective is unmodified.
Through experiments, we demonstrate that our method leads
to much more consistent inference and generative models.

Our Proposal

The ELBO loss L(x; θ, φ) that VAE models use for learning
consists of the following two terms:

Eqφ(z|x)
[
log pθ(x|z)

]−DKL

[
qφ(z|x)‖p(z)

]
, (1)

which are indicated in Figure 1 by the two black dashed lines
to require the reconstructed data point x′

i to preserve key
information of the original data point xi and the encoding
distribution qφ(z|xi) to remain close to a prior distribution
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p(z). In addition to these two losses, we introduce another
consistency loss. To derive it, we need to encode the recon-
structed data point x′

i again using the inference model and
obtain a second encoding distribution qφ(z

′|x′
i). If the infer-

ence model matches the generative model perfectly, then the
two encoding distributions would be the same. On the other
hand, if inconsistency exists, then qφ(z

′|x′
i) will drift away

from qφ(z|xi). Therefore, the distance between qφ(z|xi)
and qφ(z

′|x′
i), such as measured by Kullback-Leibler (KL)

divergence (i.e. DKL(z
′||z)), can be a good indication of the

level of inconsistency and should be minimized. This gives
us our modified learning objective as:

L(x; θ, φ)− α ·DKL(z
′||z), (2)

where α ≥ 0 is an adjustable weight that controls the
strength of the consistency constraint. As DKL(z

′||z) is
non-negative, our objective is a lower bound to the original
ELBO objective and the bound is tight when DKL(z

′||z) =
0, i.e. when the inference and the generative models per-
fectly match. Therefore, our learning objective does not alter
the original VAE’s learning objective.

Results

To visualise the effect of our method in removing the incon-
sistency between the inference and the generative models,
we show the encodings of 3 MNIST digits qφ(z|xi), the re-
constructed digits and the encodings of the reconstruction
qφ(z

′|x′
i) for both VAE and our models in Figure 2. A clear

drift occurs between the two encodings (red and blue circles)
as a result of the VAE learning, indicating the optimised
inference model has not been matched with the generative
model. In contrast, learning under our loss given in Equation
(2), we are able to remove the drift and hence obtain a con-
sistent pair of inference and generative models, indicating to
reach the optimal learning outcome, i.e. ELBO approaches
the data log likelihood.
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Figure 2: 3 pairs of encodings of original and reconstructed
images are ploted in the 2D latent space for VAE and our
models. A drift occurs in VAE encodings indicating in-
consistency between the inference and generative models,
whereas our method successfully removes such a drift.

We also quantitatively evaluate the inconsistency between
the inference and the generative models by the DKL(z

′||z)
between the two encodings qφ(z|xi) and qφ(z

′|x′
i) for both

0 5 10 15 20 25

1

2

3

4

5
VAE
Ours

Epoch

K
L(

z'
||

z)

(a) During training.

K
L(

z'
||

z)

VAE
Ours

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
3.09

0.79

VAE Ours

(b) After training.

Figure 3: DKL(z
′||z) during and after training on the held-

out test set for MNIST dataset (lower is better).

VAE and our methods during and at the end of training on a
test set of 10k images. In Figure 3, the representation learnt
under VAE algorithm constantly suffers from the inconsis-
tency between the two models, whereas our method man-
ages to control the inconsistency at very low level through-
out the training. As a result, the inconsistency has been re-
duced 3 times using our method at the end of training.

Conclusion and Future Work

We aim to solve the suboptimality issue in VAE learning due
to the inconsistency between the inference and the genera-
tive models. By introducing a novel consistency loss that di-
rectly requires the encoding of the reconstructed data point
to match the encoding of the original data, we effectively
coax the inference and the generative to be an inverse func-
tion of each other and, hence, approach the optimal solution
to VAE objective. We notice the weight α on the consistency
loss has an impact on the learning result and we would like
to investigate how to determine the optimal α in the future.
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