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Abstract

Learning latent representations in graphs is finding a map-
ping that embeds nodes or edges as data points in a low-
dimensional vector space. This paper introduces a flexible
framework to enhance existing methodologies that have diffi-
culty capturing local proximity and global relationships at the
same time. Our approach generates a virtual edge between
non-adjacent nodes based on the Forman-Ricci curvature in
network. By analyzing the network using topological infor-
mation, global relationships structurally similar can easily be
detected and successfully integrated with previous works.

Introduction

Various approaches have been proposed to find latent rep-
resentations in graphs. The traditional approach is based
on matrix-factorization algorithms related to dimension re-
duction techniques. Encoding the graph structure heavily
depends on which proximity measure is chosen. From a
random walk based perspective, learning the node embed-
dings can be formulated by optimizing the conditional prob-
abilities; the nodes have similar attributes if they co-occur
on a short random walk. For instance, struc2vec enables
more effective random walk approaches when accounting
for the structural identity independent of the node or edges
attributes (Ribeiro et al., 2017).

However, a new approach using deep neural network has
achieved a breakthrough in network embedding. The advan-
tage of this approach is that it compresses local information
so that learning representations not only leverage the sub-
structure of the graph but also the node attributes. For exam-
ple, it attempts to learn the adaptive structure-aware repre-
sentations by using jumping knowledge networks (Xu et al.,
2018).

When considering the above approaches together, it is dif-
ficult to preserve the local proximity and global relationships
at the same time.
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Curvature-based Analysis of Graphs

Consider the core of learning representations that construct
the context vertices in the network, there are two popular
approaches to deal with this problems (Ahmed et al., 2018).

• Random walk based approaches, such as node2vec and
DeepWalk, tend to generate context vertices by exploring
local nodes randomly.

• Neighborhood aggregation and convolutional methods di-
rectly encode the graph structure using a deep neural net-
work. To represent the context vertices, they incorporate
the information from the arbitrary depth of the neighbor-
hood nodes (Hamilton et al., 2017).

However, these approaches are easily perturbed on how
to construct the context vertices. In particular, the farther
apart two nodes are, the less likely the existing methodolo-
gies are to capture the structural characteristics between the
subgraphs that each node forms. To overcome this weak-
ness, a novel framework is proposed that reformulates the
graph by extending the neighborhood of the set based on the
topological information. When analyzing the structural sim-
ilarity of the subgraph, the discrete notion of the curvature is
introduced.

Forman-Ricci Curvature

To generalize the curvature in graphs, the definition of
Forman-Ricci curvature is reformulated (Weber et al., 2017).
Specifically, the discrete notion of the curvature is defined as
the geometric properties of two neighboring nodes deviating
from the state of a grid graph. To calculate the curvature, we
impose a weighting scheme on the nodes and edges so that
it reflects the geometric property of the subgraph.

Definition 1 Given a graph G = (V,E) without isolated
nodes, (i) ω : V → (0, 1], where

ω(u) =
deg(u)∑

v∈{u}∪{v:v∼u} deg(v)

and (ii) γ : E → (0, 1], where

γ((u, v)) =
ω(u)√

ω(u)2 + ω(v)2
.
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|F (u, v) − F (v, u)| = 0. 0 < |F (u, v) − F (v, u)| < ε.

(a) Equivalent subgraphs. (b) Similar subgraphs.

Figure 1: Measuring the structural similarity between sub-
graphs that each of two non-adjacent nodes forms.

The weighting scheme indicates that the subgraph has
a 2-hop neighborhood as in Figure 1. With the weighting
scheme, the curvature can be represented as the topological
information of the graph’s sub-structure.

Definition 2 Given a graph G = (V,E) without isolated
nodes, the Forman-Ricci curvature for an edge e = (v, u) is
defined as

F (e) = γ(e)

(
w(u)

γ(e)
+

w(v)

γ(e)

−
∑

eu∈ne(u),
ev∈ne(v)

[
w(u)√

γ(e)γ(eu)
+

w(v)√
γ(e)γ(ev)

])
,

where w and γ are weights defined on V and E, respectively,
and ne(v) is a set of edges from v excluding e

Generating Virtual Edges in Graphs

By estimating Forman-Ricci curvature information in graph,
it can be surmised whether two randomly sampled nodes
have structural similarity regardless of their distance. Be-
cause the curvature is calculated bidirectionally, the absolute
difference of curvature can be interpreted as the structural
differences. In detail, the two nodes have the isomorphic
structure of the subgraph if ε is zero and the structural equiv-
alence if ε is converged. Therefore, it is natural to evolve the
network by augmenting the virtual edges by choosing a set
of candidate node pairs.

Algorithm 1 Candidate Node Pairs from Curvature
Input: An undirected graph G = (V,E), parameters k and ε
Output: A set of candidate node pairs C

1: E′ ← set of edges not appeared in E;
2: C ← empty set of candidate node pairs;
3: for each e = (u, v) ∈ E′ do

4: if
|F (u,v)−F (v,u)|

max(|F (u,v)|,|F (v,u)|) < ε then

5: C = C ∪ {e};
6: end for
7: return top-k minimum results in C

Experiments

This section shows the effectiveness of the framework in an
experiment that used two different datasets. Specifically, we
concentrate on identifying the non-adjacent node set that is

(a) Karate graph. (b) Barbell graph.

Figure 2: Candidate virtual edges for two networks.

assumed to have the structural equivalence. In this experi-
ment, the value of k was set up to 3 and ε = 0.1 to select the
virtual edges.

As shown in Figure 2, two non-adjacent nodes were de-
tected that are regarded as the core of the star structure in
the network. Moreover, the two entry points that construct
the complete graph were discovered by analyzing the barbell
graph using the curvature information. Consequently, we
can conclude that curvature-based analysis of the network
captures not only the local proximity but also the global re-
lationships between the nodes.

Future Work

The aim of the proposed framework is to reinforce the
performance of existing embedding methods. This work
showed that the expansion of the neighborhood is reasonable
by curvature-based analysis. Additionally, we will demon-
strate in the future that combining the meta graph with previ-
ous methods can efficiently solve the machine learning tasks
such as link prediction and graph classification.

To refine the definition of the curvature, it is worthy that
we make an attempt to apply another discretization of cur-
vature to network analysis. Furthermore, we anticipate that
it would be practical if the curvature information can be for-
mulated in vector form to exploit both the direction and size.
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