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Abstract

We demonstrate that projecting data points into hyperplanes
is good strategy for general-purpose kernel design. We used
three different hyperplanes generation schemes, random, con-
vex hull and α-shape, and evaluated the results on two syn-
thetic and three well known image-based datasets. The re-
sults showed considerable improvement in the classification
performance in almost all scenarios, corroborating the claim
that such an approach can be used as a general-purpose kernel
transformation. Also, we discuss some connection with Con-
volutional Neural Networks and how such an approach could
be used to understand such networks better.

Random projection (RP) guarantees minimal distortions
in terms of pairwise distances when projecting points into a
low dimensional Euclidean space, making it a powerful tech-
nique for dimensionality reduction (Xie, Li, and Xue 2017).
Instead of applying RP in such typical scenario, in this paper
we project data points onto hyperplanes in order to approxi-
mate a proper decision boundary, thus supporting the design
of kernels from data.

The Statistical Learning Theory (SLT) provides tighter
guarantees on the generalization bound when using a suit-
able bias (de Mello and Ponti 2018), which we intend to
achieve when designing kernels to approximate decision
boundaries. Nonetheless, such general-purpose design is
still an open problem (Rojo-Álvarez et al. 2018) that is typi-
cally addressed by using trial-and-error approaches (Shawe-
Taylor and Cristianini 2004; Scholkopf and Smola 2002),
besides remaining one of the greatest challenges to be faced
by the ML area. If we succeed in designing such a suitable
kernel for specific problems, stronger generalization guar-
antees are expected, thus making learning more robust to
general-purpose nonlinear classifiers.

We realized that hyperplanes derived from linearized de-
cision boundaries could be used to project data points and
estimate kernels. Such projections are seen as the explicit
transformations a kernel would provide; hence, they repre-
sent new features to support the representation of classes. As
consequence, in the absence of class overlap, a linear classi-
fier can correctly classify all samples.

The concept of how RP is connected with the hyperplanes
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estimating the decision boundary is illustrated in Figure 1-
(a) for the Banana dataset. During the process of plotting all
decision boundary hyperplanes, we realized such a bound-
ary could be obtained from random hyperplanes. In fact, it
turned out to be a much simpler problem when using random
hyperplanes to project data points onto. Leading to practi-
cal applications since it is based on the highly parallelizable
inner-product operation.

Our approach consists of adding the sign projection of
each hyperplane as a new attribute to the original input
space. All those new features are then used to uniquely de-
termine the class of each sample when there is no class over-
lap, and the decision boundary is approximated by a subset
of such hyperplanes. The transformation illustrated on the
right of Figure 1-(a) represents the following expression:

Φ([xi]) �→ [xi, sgn(〈n1, xi〉), . . . , sgn(〈nk, xi〉)], (1)

where xi is an input space point, ni represents the normal
vector of each hyperplane, and sgn is the sign function.

In addition to random hyperplanes, we also used the strat-
egy of convex hull and its generalization, a.k.a. α-shape, as
alternative methods to produce hyperplanes. Given the way
they are generated, they turn out to be more adherent to
the class instances of data samples. The closure formed to
represent each class allows the generation schemes of hy-
perplanes to cope with class overlapping. Each hyperplane
normal vector produces different projections per class, thus
being capable of separating instances under different labels.

Our hypothesis is that the decision boundary can be com-
posed of a subset of all produced hyperplanes. Because of
the limited magnitude of the sign projection, we conjecture
they do not jeopardize the classification task due to the curse
of dimensionality, even if several hyperplanes are not useful
in a particular separability scenario. Furthermore, there is a
clear connection of our approach with Deep Learning, most
specifically with Convolution Neural Networks (CNN).

In order to assess our approach, we used two bidimen-
sional and well-known toy datasets, they show nonlin-
ear data behaviors and compelling qualities that real-world
datasets usually have, in both we also added several lev-
els of Gaussian noise. Figure 1-(b) illustrates those two toy
datasets, the first comprises the Banana set and the second is
the Concentric Circles. In order to complement our study, we
decided to assess other three typical classifications bench-
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Figure 1: (a) - On the left, linear estimate of the decision boundary on the Banana toy dataset. The arrows define the normal
vector of each hyperplane. On the right, the sign of the projection of the data point on each hyperplane: yellow points are aligned
with the normal vector, and green ones are opposite to the normal vector of each hyperplane. (b) - Illustration of the generation
methods of hyperplanes. Each column represents a different process to generate hyperplanes, the first one uses α = 0, thus
producing the convex hull, the second uses α = 3, and the third randomly generates ten hyperplanes. At the first row, procedures
are applied on the Banana dataset and at the second on the Concentric circles.

marks adopted in the deep learning literature (e.g., MNIST,
CIFAR-10, and STL-10).

First, we produce hyperplanes on the original input space,
then data points are projected into such linear boundaries
taking only their signs. Therefore, signs are seen as new
features added to the original dataset. Finally, using several
classification algorithms, like SVM, we evaluate the class
separability performance. We firstly assessed the randomly
generated hyperplanes; then, the closure produced by the
convex hull around each class, and at last, the α-shape.

Figure 1-(b) depicts the two schemes of generating hy-
perplanes on the toy datasets. We conclude that when one of
the classes encloses the other or when the boundary forms a
curve, the α-shape is the most suitable option. The in-sample
noise makes the α-shape prone to produce more hyperplanes
even when there is a clear class separability.

The proposed approaches (i.e., random, convex hull or
α-shape) provided good performances in the general case
at a low computational cost. We intend to further investi-
gate which hyperplane generation procedure is more suit-
able, and what is the adequate number of hyperplanes. In
that sense, we have already started the study of theoretical
lower limits on the number of hyperplanes.

The overall results support the hypothesis that the projec-
tion approaches can significantly improve the classification
performance. The synthetic scenario allowed us to assess
the robustness and low parameter sensitivity (robustness) for
both linear classifiers used (Perceptron and SVM), even in
the presence of significant class overlapping, and they al-
ways presented the best or close to the best outcome. Al-
though the SVM did not present better performances than
the Perceptron on the image-based datasets, it confirmed sta-
ble results over the number of hyperplanes, even producing
fewer support vectors in case of MNIST.

The connection between random hyperplanes and CNN
(masks randomly initialized) can be used to reason about

CNN inner working and good performances reported in the
literature. Since, at times, the results on the convex hull and
α-shape were similar to the random hyperplanes, it might
be the case that they are also connected to CNN, we still
plan to closer examine possible theoretical foundations to
explain such connections. Finally, we reiterate the useful-
ness of such a hyperplane projection approach as a general-
purpose to support the kernel design for classification tasks.
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