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Abstract

The purpose of this paper is to draw attention to a particu-
lar family of quantified Boolean formulas (QBFs) stemming
from encodings of some vertex Folkman problems in ex-
tremal graph theory. We argue that this family of formulas
is interesting for QSAT research because it is both conceptu-
ally simple and parametrized in a way that allows for a fine-
grained diversity in the level of difficulty of its instances. Ad-
ditionally, when coupled with symmetry breaking, the formu-
las in this family exhibit backbones (unique satisfying assign-
ments) at the top-level existential variables. This benchmark
is thus suitable for addressing questions regarding the con-
nection between the existence of backbones and the hardness
of QBFs.

1 Introduction

Graph theory has served as an excellent source of problems
where SAT techniques can be evaluated against (Urquhart
1987; Krishnamurthy and Moll 1981; Järvisalo et al. 2012).
The particular graph problems we look at in this paper are
vertex Folkman problems (Folkman 1970) that consider the
existence of graphs that do not contain cliques of a given
size and are such that their vertices cannot be colored in a
way that avoids cliques of prescribed orders in each color.
In Folkman theory, a theorem by Łuczak, Ruciński, and
Urbański (2001) guarantees that the instances obtained from
a particular choice of parameters have unique solutions.
When these instances are interpreted as QBFs, and under
appropriate symmetry breaking, this theorem guarantees the
corresponding formulas have unique satisfying assignments
to a subset of the top-level existential variables. This be-
havior, typically referred to as a backbone in the SAT re-
search community (Williams, Gomes, and Selman 2003;
Kilby et al. 2005), has been linked to the hardness of SAT
instances but, to the best of our knowledge, has not yet been
formally studied in the context of QSAT.

2 Background

Let Kn be the complete graph on n vertices. We define the
set of Folkman graphs FN (a1, a2, . . . , ar;m), where N and
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m are natural numbers and (ac)1≤c≤r is a sequence of natu-
ral numbers such that ac ≥ 2, as the set of all graphs G of or-
der N that are Km-free and are such that for every coloring
of the vertices of G using r colors (hereon called r-colorings
of the vertices of G) there exists a color c ∈ {1, 2, . . . , r}
such that there is a monochromatic Kac

in color c.
Consider the problem of determining whether

FN (a1, a2, . . . , ar;m) is non-empty. It is possible to
encode this problem as a QBF using

(
N
2

)
variables xi,j

and rN variables yi,c such that the formula is satisfiable
if and only if FN (a1, a2, . . . , ar;m) is non-empty. The
variable xi,j is set to true if and only if there exists an edge
between vertices i and j, while the variable yi,c is set to true
if and only if vertex i has color c. The intuition behind our
encoding, which we present next, is that we are looking for
a graph G that avoids Km as a subgraph and is such that
for all valid assignments to the variables yi,c there exists
a c ∈ {1, 2, . . . , r} and a subset T ⊆ {1, 2, . . . , N} of
cardinality ac such that all xi,j for i, j ∈ T , i �= j, and all
yi,c for i ∈ T are true. To avoid Km as a subgraph, the
formula

AN
m =

∧
S⊆{1,2,...,N},

|S|=m

∨
i,j∈S,
i �=j

xi,j

guarantees that for no subset S ⊆ {1, 2, . . . , N} of cardinal-
ity m are the variables xi,j all true for i, j ∈ S with i �= j.
In order to consider only valid r-colorings, the formula

UN
r =

N∧
i=1

⎛
⎜⎝
(

r∨
c=1

yi,c

)
∧

⎛
⎜⎝ ∧

c,d∈{1,...,r}
c �=d

(yi,c ∨ yi,d)

⎞
⎟⎠
⎞
⎟⎠

guarantees that exactly one of yi,1, yi,2, . . . , yi,r is true for
each vertex i. The formula

CN
n,c =

∨
T⊆{1,2,...,N},

|T |=n

⎛
⎜⎝
⎛
⎜⎝ ∧

i,j∈T
i �=j

xi,j

⎞
⎟⎠ ∧

(∧
i∈T

yi,c

)⎞⎟⎠
is true if there is a subset T ⊆ {1, 2, . . . , N} of cardinality n
such that all the edges between these vertices exist in G (i.e.,
xi,j is true for all i, j ∈ T , i �= j) and all the vertices in T
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are of the same color c. Putting these together, the formula

FN (a1, . . . , ar;m) = ∃(xi,j)1≤i<j≤N .

∀(yi,c)1≤i≤N, 1≤c≤r.

AN
m ∧

(
UN
r →

r∨
c=1

CN
ac,c

)
(1)

is true if and only if FN (a1, a2, . . . , ar;m) is non-empty.
For the rest of the paper, we set a = max{a1, a2, . . . , ar}.

Łuczak, Ruciński, and Urbański (2001) proved the follow-
ing.

Theorem 1 ((Łuczak, Ruciński, and Urbański 2001))
For every non-decreasing sequence of natural numbers
a1, a2, . . . , ar, ac ≥ 2, and m = 1 +

∑r
c=1(ac − 1)

the graph Kar+m − C2ar+1 is the unique graph in
Far+m(a1, a2, . . . , ar;m).

From Theorem 1 we can derive several properties of
Formula (1) for these parameters. By counting the num-
ber of cycles of length 2a + 1 in Km+a, we can see that
Fm+a(a1, a2, . . . , ar;m) has exactly

(
m+a
2a+1

) (2a)!
2 satisfying

assignments of the xi,j variables, so in particular it is satisfi-
able. It is also evident that all graphs represented by these
satisfying assignments are pairwise isomorphic. This can
be exploited to create a family of Boolean formulas with
a unique satisfying assignment for the top-level existential
variables. In the following section we explore how symme-
try breaking can be used for this purpose.

2.1 Symmetry Breaking

Recall that two graphs G and H are isomorphic if they are
essentially the same up to a permutation of their vertices.
The set of graphs of order n can then be partitioned into
equivalence classes In such that for each class C ∈ In, all
graphs in C are pairwise isomorphic. A symmetry break-
ing technique for generic graph-search problems is perfect
if exactly one graph from each class in In is admitted. We
can obtain a family of QBF benchmarks based on Theo-
rem 1, each having a unique solution by using partial sym-
metry breaking. The partial symmetry breaking strategy we
explore in this paper is based on the observation that it is
sufficient to have perfect symmetry breaking for the subset
I≤2a+1
m+a ⊂ Im+a of isomorphism classes of graphs of order

m + a with at least
(
m+a
2

) − (2a + 1) edges. In this case,
one could add the constraint
ATMOSTK((xu,v)u,v<a+m,u �=v; 2a+ 1) → SB(I≤2a+1

m+a )

and SB(I≤2a+1
m+a ) can be built from enumerating all non-

isomorphic graphs with at least
(
m+a
2

) − (2a + 1) edges
through the nauty (McKay and Piperno 2014) package
and then building a sum-of-products predicate from the edge
variables involved.

3 Implementation and Experiments
We implemented software to generate instances from our
benchmark in QDIMACS1 and QCIR-14 (Jordan, Klieber,

1http://www.qbflib.org/qdimacs.html

and Seidl 2016) formats, thus covering the majority of QSAT
solvers available. We also implemented model enumerators
for instances of this benchmark. These enumerators verify
the correctness of the instances generated since they enu-
merate the unique solution modulo symmetries. The soft-
ware and sample running times of some solvers on these in-
stances are available online2.

4 Future Work

A natural next step would be to complement this work
with a theoretical analysis that could shed light on bet-
ter solving algorithms or heuristics that target this family
of formulas in the hope that generalizations of some of
these techniques could help QSAT solvers at large. It would
be interesting to determine whether there are short proofs
for the instances in our benchmark when using proof sys-
tems that include symmetry rules (Kauers and Seidl 2018;
Blinkhorn and Beyersdorff 2019). Such proofs would pro-
vide concrete performance measures as the length of proofs
provided by the current QSAT solvers could be compared to
the ones in proof systems with symmetry rules.
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