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Abstract

This paper presents a novel deconvolution mechanism, called
the Sparse Deconvolution, that generalizes the classical trans-
pose convolution operation to sparse unstructured domains,
enabling the fast and accurate generation and upsampling of
point clouds and other irregular data. Specifically, the ap-
proach uses deconvolutional kernels, which each map an in-
put feature vector and set of trainable scalar weights to the
feature vectors of multiple child output elements. Unlike pre-
vious approaches, the Sparse Deconvolution does not require
any voxelization or structured formulation of data, it is scal-
able to a large number of elements, and it is capable of uti-
lizing local feature information. As a result, these capabilities
allow for the practical generation of unstructured data in un-
supervised settings. Preliminary experiments are performed
here, where Sparse Deconvolution layers are used as a gener-
ator within an autoencoder trained on the 3D MNIST dataset.

1 Background

Generator mechanisms are an important component of many
machine learning architectures, where they are used to trans-
form compressed data into some expanded representation
that is desired by the user. They are most commonly seen
within approaches like autoencoders and generative adver-
sarial networks (GANs) in the form of transpose convolu-
tional or fully-connected feed-forward layers of increasing
size. Much work has been done on these approaches, but the
data processed (e.g. images) is always structured, as required
by the models’ components, restricting their applicability to
standard domains.

Irregular and sparse data is found in many common sys-
tem formulations, sensor outputs, and data sets. For exam-
ple, point clouds are obtained from outputs of LIDAR and
other 3D scans and have advantages over other 3D represen-
tations due to their compactness. However point clouds often
have a variable number of points and lack structure, limiting
their practical use by machine learning approaches. Adding
edges or connections, meshes and graphs also share these
qualities. Although it is believed that the approach presented
here can be extended to many other data formats, potentially
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increasing the effective informational bandwidth of a large
number of deep learning systems, this preliminary work is
focused on point clouds.

While recent strides in the field of geometric deep learn-
ing have resulted in algorithms that can extract features
from point clouds in supervised settings like segmentation
and classification, little progress has been made toward the
generation of such data in unsupervised settings like auto-
encoding. Solutions for point cloud upsampling, such as PU-
Net (Yu et al. 2018), exist but do not support generation
from a compressed latent feature vector representation of the
point cloud. Therefore these methods do not support point
cloud upsampling within generative models or for tasks such
as unsupervised feature extraction. Some methods to gener-
ate point clouds from a latent space have been developed,
such as (Zamorski et al. 2018), but they suffer from issues
such as a high number of trainable parameters or the lack
of local feature information used in the upsampling pro-
cess. The Sparse Deconvolution presented here is a simple
and scalable mechanism that is able to generate point clouds
from compressed latent representations without ignoring lo-
cal feature information.

2 Sparse Deconvolution Mechanism

The Sparse Deconvolution is a trainable mechanism that
generalizes the transpose convolution operator to unstruc-
tured data. The operation uses a deconvolution kernel, which
maps an input feature vector and set of trainable scalar
weights to the feature vectors of m child outputs. The kernel
consists of two multilayer perceptrons (MLPs), which both
input a parent point’s feature vector. The first MLP outputs
the spatial offsets of the m child points relative to their par-
ent point, and the second MLP outputs the feature vectors of
each child point.

To concretely illustrate one Sparse Deconvolution opera-
tion, consider an arbitrary point p(x, z) in d spatial dimen-
sions characterized by its position x ∈ R

d and feature vec-
tor z ∈ R

f that we wish to deconvolve into multiple child
points. The Sparse Deconvolution mechanism is comprised
of two MLPs, denoted by hx(z) and hz(z), which input the
feature vector z and output the spatial offsets and feature
vectors of the child points, respectively. The positional MLP
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hx returns m spatial residuals Δxi ∈ R
d relative to the par-

ent, and the feature-generating MLP hz outputs m feature
vectors z′i ∈ R

f , where i is the index of the ith child point.
Therefore m new child points, characterized by features z′i
and positions x′

i = x +Δxi, are generated from the parent
point p. In this way, the Sparse Deconvolution is applied to
all points of a latent point cloud to grow the set of points, and
it is repeated iteratively until the desired number of points is
achieved, just as transpose convolutions are applied to de-
convolve images until a desired resolution is reached.

3 Preliminary Experimental Results

The Sparse Deconvolution mechanism is demonstrated here
as the decoder stage of an autoencoder, which is a popular
unsupervised approach for learning encodings of data. The
objective of the model is to input a point cloud, compress it
to a reduced latent representation, and reconstruct the origi-
nal point cloud from that latent representation.

The autoencoder model was trained using the 3D MNIST
dataset (Castro 2016), a 3D point cloud representation of
the classic MNIST handwritten digit dataset. For the au-
thors’ convenience and faster training on limited hardware,
the number of points in each sample was reduced to 2500
by randomly selecting from the original point clouds. The
points are defined as coordinates in three-dimensional Eu-
clidean space.

The autoencoder follows the standard architecture, but
with each mechanism replaced by its point cloud analog,
many of which are borrowed from other work. In the en-
coding stage, we extract a fixed size latent feature vector
describing a point cloud of arbitrary size. This is done by
applying the convolutional layer from (Simonovsky and Ko-
modakis 2017) followed by the operation from (Dhillon,
Guan, and Kulis 2007) that, similar to a pooling operation,
eliminates redundant information after local feature extrac-
tion. These two operations are repeated iteratively, reduc-
ing the number of points by approximately half each time,
where each child point cloud contains sufficient information
to reconstruct their parent. After repeating these operations
multiple times, global pooling is applied to generate a fea-
ture vector of fixed size, similarly to (Charles et al. 2017).
Then the fixed-size latent feature vector is decoded by ap-
plying Sparse Deconvolutions iteratively until the size of the
output point cloud matches that of the original. The recon-
struction similarity is evaluated quantitatively using Cham-
fer distance, which is also used as the training loss.

The results are shown in Figure 1, where the original and
reconstructed point clouds are displayed side-by-side. It is
seen that the reconstruction assembles to form a representa-
tion of the appropriate digit as a smooth point cloud that is
even more legible than the original.

4 Conclusion and Future Work

This work presents a Sparse Deconvolution mechanism that
generalizes classical transpose convolutions to sparse un-
structured domains. This method uses a simple deconvolu-
tional kernel to achieve fast and accurate upsampling dur-
ing generative tasks, which has been demonstrated with an

Figure 1: Example point cloud reconstructions using an
autoencoder with Sparse Deconvolutions. Left: Original,
Right: Reconstruction

autoencoder model trained on the 3D MNIST dataset. The
authors believe that the Sparse Deconvolution mechanism is
also extensible to other formulations, such as outputs of vari-
able size without the need for expensive recurrent architec-
tures and the processing of other data formats (e.g. meshes
and graphs).
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