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Abstract

We consider the problem of learning linear classifiers when
both features and labels are binary. In addition, the fea-
tures are noisy, i.e., they could be flipped with an unknown
probability. In Sy-De attribute noise model, where all fea-
tures could be noisy together with same probability, we show
that 0-1 loss (l0−1) need not be robust but a popular surro-
gate, squared loss (lsq) is. In Asy-In attribute noise model,
we prove that l0−1 is robust for any distribution over 2 di-
mensional feature space. However, due to computational in-
tractability of l0−1, we resort to lsq and observe that it need
not be Asy-In noise robust. Our empirical results support Sy-
De robustness of squared loss for low to moderate noise rates.

Introduction

Quality of data is being compromised as its quantity is get-
ting larger. In classification setup, bad quality data could be
due to noise in the labels or noise in the features. Label noise
research has gained a lot of attention in last decade (Sastry
and Manwani 2016). In contrast, feature or attribute noise is
still unexplored. As opposed to continuous valued attributes,
noise in categorical features, particularly binary, can drasti-
cally change the relative location of a data point and signifi-
cantly impact the classifier’s performance.

(Quinlan 1986) studied the effect of noise when the algo-
rithms are decision trees. (Zhu and Wu 2004; Khoshgoftaar
and Van Hulse 2009) study attribute noise from the perspec-
tive of detecting noisy data points and correcting them.

Our major contributions lie in identifying loss functions
that are robust (or not) to attribute (binary valued) noise in
Empirical Risk Minimization (ERM) framework. This has
an advantage that there is no need of either knowing the true
value or cross-validating over or estimating the noise rates.

Problem Description

Let D be the joint distribution over X×Y , where X ∈ X ⊆
{−1, 1}n and Y ∈ Y = {−1, 1}. Let the decision function
f : X �→ R be an element of the class of all measurable
functions H. We restrict our set of hypothesis to be in linear
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hypothesis class Hlin := {(β, c),β ∈ R
n, c ∈ R}. Let D̃

denote the distribution on X̃×Y obtained by inducing noise
to D with X̃ ∈ X ⊆ {−1, 1}n. The corrupted sample is
S̃ := {(x̃1, y1), . . . , (x̃m, ym)} ∼ D̃m. The probability that
the value of ith attribute is flipped is given by pi = (X̃ =
−x|X = x, Y = y), i ∈ [n] where [n] = {1, . . . , n}. We
assume that the class/label is not affected by attribute noise.

Based on the flipping probability and the dependence be-
tween events of flipping for different attributes, we iden-
tify two attribute noise models. If all the attribute values are
flipped together with same probability p, then it is referred
to as the symmetric dependent attribute noise model (Sy-
De). If each attribute j flips with probability pj indepen-
dently of any other attribute k ∈ [n]\{j}, then it is referred
to as the asymmetric independent attribute noise model
(Asy-In). Even though Sy-De attribute noise model is sim-
ple, it cannot be obtained by taking pi = pj , ∀i, j ∈ [n]
in Asy-In attribute noise model. Real world example of Sy-
De (or Asy-In) noisy attributes: Consider a room with many
sensors connected in series (or with individual battery) mea-
suring temperature, humidity, etc., as binary value, i.e., high
or low. A power failure (or battery failures) will lead to all
(or individual) sensors/attributes providing noisy observa-
tions with same (or different) probability.

We consider ERM framework for classification. A natu-
ral choice for loss function is 0-1 loss, i.e., l0−1(f(x, y)) =
1[f(x)y<0]. Bayes classifier f∗ = argminf∈H RD(f) and
Bayes risk is RD(f∗) = minf∈H RD(f) where RD(f) =
ED[1[f(x)y<0]]. Corresponding quantities for noisy distribu-
tion D̃ are RD̃(f̃∗) = minf̃∈H ED̃[1[f̃(x̃)y<0]] and f̃∗ =

argminf̃∈H RD̃(f̃).

Non-convex nature of 0-1 loss makes it difficult to opti-
mize and hence convex upper bounds (surrogate losses) are
used in practice. In this work, we consider the squared loss
lsq(f(x, y)) = (y−f(x))2, a differentiable and convex sur-
rogate loss function. Our restriction of hypothesis to linear
class Hlin can be interpreted as a form of regularization. Ex-
pected squared clean and corrupted risks are RD,lsq (f) =

ED[(y − f(x))2] and RD̃,lsq
(f̃) = ED̃[(y − f̃(x̃))2]. Hy-

pothesis in Hlin minimizing these clean and corrupted risks
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are denoted by f∗
sq,lin and f̃∗

sq,lin. Next, we define attribute
noise robustness of risk minimization scheme Al.
Definition 1. Let f∗

Al
and f̃∗

Al
be obtained from clean and

corrupted distribution D and D̃ using any arbitrary scheme
Al. Then, scheme Al is said to be attribute noise robust if

RD(f∗
Al
) = RD(f̃∗

Al
).

Also, l is said to be an attribute noise robust loss function.

Attribute Noise Robust Loss Functions

We, first, consider Sy-De attribute noise model and present a
counter example (Example 1) to show that 0-1 loss need not
be robust to Sy-De attribute noise. To circumvent this prob-
lem, we provide a positive result by showing that squared
loss is Sy-De attribute noise robust with origin passing lin-
ear classifiers (Theorem 1). Details of examples and proofs
are available in Supplementary Material (SM)1.
Example 1. Consider a population of two data points (in 1-
D) (x, y) as (−1, 1) and (1,−1) with probability 0.25 and
0.75 with a classifier flin(x) = bx + c. Then, the l0−1 op-
timal clean classifier is f∗

lin = (b∗, c∗) = (−1,−0.1) with
RD(f∗

lin) = 0. Also, the l0−1 optimal Sy-De attribute noise
(p = 0.4) corrupted classifier is f̃∗

lin = (b̃∗, c̃∗) = (1,−2)

with RD(f̃∗
lin) = 0.25. Since, RD(f̃∗

lin) �= RD(f∗
lin), 0-1

loss function need not be Sy-De attribute noise robust.
Theorem 1. Consider a clean distribution D on X×Y and
Sy-De attribute noise corrupted distribution D̃ on X̃ × Y
with noise rate p < 0.5. Then, squared loss lsq with origin
passing linear classifiers is Sy-De attribute noise robust,i.e.,

RD(f̃∗
lin,lsq ) = RD(f∗

lin,lsq ) (1)

where f∗
lin,lsq

= (β∗
1 , . . . , β

∗
n) and f̃∗

lin,lsq
= (β̃∗

1 , . . . , β̃n∗)
correspond to optimal linear classifiers learnt using squared
loss on clean (D) and corrupted (D̃) distribution.
Remark 1. Sy-De robustness of squared loss is an inter-
esting result because given an attribute noise corrupted
dataset, obtaining a linear classifier entails solving only a
linear system of equations. (Demonstrated on UCI datasets.)

Now, we consider Asy-In attribute noise model and show
that 0-1 loss is robust to this noise with non-origin passing
classifiers when n = 2 (Theorem 2). As l0−1 based ERM
is computationally intractable, we consider lsq and present a
counter example to show that lsq need not be Asy-In noise
robust (Example 2).
Theorem 2. Consider a clean distribution D with probabil-
ities {d1, d2, d3, d4} on X × Y with n = 2 (population of
2n data points) and Asy-In attribute noise corrupted distri-
bution D̃ on X̃×Y with noise rates p1 < 0.5 and p2 < 0.5.
Then, 0-1 loss with non-origin passing linear classifiers is
Asy-In attribute noise robust, i.e.,

RD(f̃∗
lin,l0−1

) = RD(f∗
lin,l0−1

) (2)

where f∗
lin,l0−1

= (β∗
1 , 1, c

∗) and f̃∗
lin,l0−1

= (β̃∗
1 , 1, c̃

∗)
correspond to optimal linear classifiers learnt using 0-1 loss
on clean (D) and corrupted (D̃) distribution respectively.
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Example 2. Consider a population of 3 data points (in 2-
D) (x1, x2, y) as (−1, 1, 1), (−1,−1,−1), and (1,−1, 1)
with probabilities as ( 14 ,

1
2 ,

1
4 ) with a classifier flin(x) =

b1x1 + b2x2. Then, lsq optimal clean classifier is f∗
lin,lsq

=

(b∗1, b
∗
2) = (0.5, 0.5) with RD(f∗

lin,lsq
) = 0.5. Also, lsq

optimal Asy-In attribute noise (p1 = 0.1, p2 = 0.2) cor-
rupted classifier is f̃∗

lin,lsq
= (b̃∗1, b̃

∗
2) = (0.4, 0.3) with

RD(f̃∗
lin,lsq

) = 0.25. Since, RD(f∗
lin,lsq

) �= RD(f̃∗
lin,lsq

),
squared loss need not be Asy-In attribute noise robust.

Experiments
Figure 1 demonstrates Sy-De attribute noise robustness of
squared loss on 3 UCI datasets (Dheeru and Karra Taniski-
dou 2017); details in SM. As SPECT dataset is imbalanced,
in addition to accuracy, we also report arithmetic mean
(AM). To account for randomness in noise, results are aver-
aged over 15 trials of train-test partitioning (80-20). The low
accuracy in comparison to clean classifier can be attributed
to the finite samples available for learning the classifiers.

Figure 1: Test data performance of lsq with Sy-De attribute
noise.

Looking Forward
Our work is an initial attempt in binary valued attribute
noise; an extension to general discrete valued attributes
would be interesting. Asy-In attribute noise model raises
some non-trivial questions w.r.t. choice of loss functions like
robustness of 0-1 for n > 2, explanation for the surprising
non-robustness of squared loss as compared to robustness of
a difficult to deal 0-1 loss, search for other surrogate loss
functions that are robust. Finally, we believe that attribute
dimension n could have a role to play in noise robustness.
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