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Abstract

Meta-algorithmics, the field of leveraging machine learning
to use algorithms more efficiently, has achieved impressive
performance improvements in many areas of AI. It treats the
algorithms to improve on as black boxes – nothing is known
about their inner workings. This allows meta-algorithmic
techniques to be deployed in many applications, but leaves
potential performance improvements untapped by ignoring
information that the algorithms could provide. In this paper,
we open the black box without sacrificing the universal ap-
plicability of meta-algorithmic techniques by automatically
analyzing the source code of the algorithms under consider-
ation and show how to use it to improve algorithm selection
performance. We demonstrate improvements of up to 82% on
the standard ASlib benchmark library.

Introduction
The past decade has seen the rise of meta-algorithmic tech-
niques that enable the more efficient and intelligent use of
existing algorithms, providing an alternative to the labori-
ous task of developing new algorithms. The first prominent
proponent of this was the SATzilla system (Xu et al. 2008),
which implements an algorithm selector that decides which
of an existing SAT solver to run to solve a particular SAT
problem instance. After the success of SATzilla, there have
been other examples of utilizing meta-algorithmic tech-
niques in practice. For example, 3S (Kadioglu et al. 2011)
creates a schedule of algorithms to run on problem instances.

The above examples employ various techniques and ap-
proaches but have a unifying idea – algorithms are treated as
black boxes. That is, the only property of algorithms that is
known is their performance. This idea allows practitioners to
ignore the underlying specifics of each algorithm. While this
approach has achieved great results, there is a potential for
improvement that can be gained by taking into the account
the algorithms.

In this paper, we argue that ignoring the information that
the algorithm can provide in this way leaves useful knowl-
edge untapped that can improve the performance of meta-
algorithmic approaches. We open the black box without
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compromising the general applicability of meta-algorithmic
techniques by automatically analyzing the source code of the
algorithms under consideration and demonstrate the perfor-
mance improvements that can be achieved this way – up to
82% on MCP compared to leaving the black box closed. We
leverage the standard ASlib benchmark library (Bischl et al.
2016) and a standard software analysis tool.

Related Work
The algorithm selection problem is simply defined as select-
ing the most appropriate algorithm for a specific instance of
a problem and was first introduced by Rice in 1976 (Rice
1976). An important idea in algorithm selection is the con-
struction of algorithm portfolios where the goal is to collect
instances of the same type of problems and algorithms that
solve them into one portfolio. The purpose of this portfolio
is to minimize the risk of selecting a sub-optimal algorithm
for a given problem instance.

The first famous algorithm selection system was
SATzilla (Xu et al. 2008), which built a portfolio of SAT
solvers and utilized them to solve instances of SAT. This
idea was later replicated in other domains of AI, such as
ASP (Hoos, Lindauer, and Schaub 2014), TSP (Kerschke et
al. 2018), 3S (Kadioglu et al. 2011).

A common approach to algorithm selection is to build em-
pirical performance models for each algorithm in a portfo-
lio. These performance models are machine learning mod-
els trained on features of problem instances. Then, given a
new problem instance, an algorithm selector chooses an al-
gorithm with the most optimal predicted performance. To
the best of our knowledge, there are no approaches that an-
alyze the source code of an algorithm to extract information
for algorithm selection.

Methodology and Results
For this project, we have combined algorithmic and instance
features to build one performance model per portfolio. That
is, there is only one model that predicts the performance of
all algorithms for a given scenario. This is in contrast to the
standard approach of building performance models for each
algorithm in a scenario.
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So far, we have performed experiments on six ASlib
scenarios (Bischl et al. 2016) – TSP-LION2015, SAT11-
RAND, SAT11-HAND, SAT11-INDU, SAT03-16 INDU
and OPENML-WEKA-2017. We have also created a
SAT18-EXP scenario based on the SAT-2018 competition
results (Heule, Järvisalo, and Suda 2018).

We analyzed the algorithms in the above scenarios with
the open-source Metrix++ tool (Metrix++ 2009) and col-
lected the following features:
• cyclomatic complexity, the number of independent execu-

tion paths (McCabe 1976),
• maxindent complexity, the maximum level of indentation

as a proxy for code complexity (Tornhill 2018),
• number of lines of code,
• size in bytes, and
• number of files.

The experimental results are summarized in Figure 1.
MCP stands for misclassification penalty, which is the ad-
ditional cost incurred because a sub-optimal algorithm was
chosen. The single best solver is the individual solver that
performs best on average across all problem instances. The
virtual best solver is a solver that always chooses the best
solver from a portfolio for a given instance. Together, the
single and virtual best solvers provide bounds on the per-
formance of an algorithm selection system – it cannot be
better than the virtual best solver and should not be worse
than the single best solver. We normalized the performances
of an algorithm selection system to the fraction of the gap
closed between single and virtual best, following (Bischl et
al. 2016), which allows us to directly compare performance
across different scenarios.

These results show that adding software features improves
the performance of algorithm selection in most of cases (four
out of seven). While adding algorithm features does not help
for all scenarios, there is a significant performance improve-
ments in some cases.

On average, there is a 34.07% relative improvement in
terms of MCP across the four scenarios where our approach
improves algorithm selection performance. Notably, TSP-
LION2015 scenario sees an a relative improvement of 82%
for MCP metric. For the remaining three scenarios, the rela-
tive decrease in performance is 5% in terms of MCP. These
results demonstrate the promise of the new approach.
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Figure 1: Percent gap closed between single best (0) and vir-
tual best solver (100) in percent in terms of MCP. Numbers
less than 0 denote performance worse than the single best
solver. Values were rounded to integers. The best value for a
particular scenario is shown in bold.
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