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Abstract

Fair division is a subfield of multiagent systems that is con-
cerned with object distribution. When objects are indivisible,
the Maximin Share Guarantee (MMS) is a desirable fairness
notion; however, it is not guaranteed to exist. While MMS al-
locations may not always exist, a relaxation of MMS is guar-
anteed to exist. We show that there exists a family of instances
for which this relaxation fails to guarantee the MMS value for
all but a small constant number of agents.

Introduction and motivation

Fair division encompasses problems within the area of mul-
tiagent systems that deal with distributing a set of indivis-
ible objects among a set of agents. These problems arise
in practical domains such as course selection and inheri-
tance division (Brams and Taylor 1996; Budish 2011). The
gold standard for fair division is envy-freeness where each
agent weakly prefers its allocation to those of any other
agent. However, for the case of indivisible goods, envy-
freeness is not guaranteed to exist: consider a single good
which is desired by two agents. One desirable relaxation
of envy-freeness is Maximin Share Guarantee (MMS) pro-
posed by (Budish 2011). MMS is a generalization of the cut-
and-choose protocol (Brams and Taylor 1996) where each
agent’s MMS guarantee is the amount of value it can guar-
antee by dividing the goods into bundles and then choosing
a bundle last. A surprising construction by (Procaccia and
Wang 2014) showed MMS allocations are not guaranteed to
exist. In addition, computing MMS values is NP-complete
(Woeginger 1997). As a result, recent research has explored
multiple approximations of MMS where agents are guaran-
teed to receive a constant fraction of their MMS value (Garg
and Taki 2019). Another MMS approximation technique is
optimal-MMS for which an allocation is always guaranteed
to exist by definition (Nguyen, Nguyen, and Rothe 2017;
Aziz et al. 2017).

In contrast to most approximations of MMS, one can con-
sider scenarios where it is critical that some agents receive
their full MMS value. For example, senior college students
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must be guaranteed seats in order to avoid graduation de-
lays. We address the question of how many agents receive
at least their MMS value in optimal-MMS allocations. Our
results imply that no optimal-MMS algorithm can guarantee
full MMS value for more than a constant number of agents.

The model

A fair division instance I = 〈N,M, V 〉 is a set of agents
N with |N | = n, a set of indivisible goods M , and a valua-
tion profile V . We assume that each agent’s valuation func-
tion vi : 2M → R≥0 is additive. An allocation is an n-
partition of the elements A = (A1, . . . , An) where agent i
receives bundle Ai. The MMS value of each agent is given
by MMSi = max(A1,...,An) minj vi(Aj). An allocation sat-
isfies MMS if every agent receives at least their MMS value
i.e. ∀i ∈ N, vi(Ai) ≥ MMSi.

For a given instance, the optimal-MMS value λ∗(I) is the
egalitarian optimal approximation of MMS that all agents
can be guaranteed. That is λ∗(I) = max(A1,...,An)

vi(Ai)
MMSi

.
As the set of possible allocations is finite, an optimal-MMS
allocation always exists. Furthermore, an MMS allocation
exists iff λ∗(I) ≥ 1 (Nguyen, Nguyen, and Rothe 2017).

Our results

We show that the notion of optimal-MMS may result in al-
locations where very few agents receive their MMS guaran-
tees. Specifically, there exists a family of instances such that
for any n, only a constant (at most 4) number of agents re-
ceive their MMS guarantee. We illustrate our construction
for the case where n = 6 and d = 3 in Figure 1b.
Theorem 1. For any n ≥ 3 and any d ≤ 	n

2 
, there exists
an instance with only O(dn) goods where any optimal-MMS
allocation guarantees at most �n

d � + 1 agents their MMS
value.

Our construction relies upon tensors. An order d tensor
S with dimensions (n × n × . . . × n) has elements in-
dexed by a d-tuple (x1, . . . , xd) where each xi ∈ [n]. The
element at index (x1, . . . , xd) has value S[x1, . . . , xd] or
Sx1...xd

for short. The (d − 1)-order slices of S along di-
mension j are given by Sj(1) to Sj(n) where Sj(i) =
{Sx1...xd

: xj = i}. These slices are shown for an order
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3 tensor in Figure 1a. We also define Si;xj=k to be the ele-
ment where all indices are i except index xj = k. For ex-
ample, Si;x1=n = Sn11...1. Tensor addition is elementwise
((S + T )x1,x2,...,xd

= Sx1,x2,...,xd
+ Tx1,x2,...,xd

). We now
sketch the proof of Theorem 1.

Proof Sketch. All tensors in our construction are order d
with dimensions (n× n× . . .× n).

Our construction first builds a tensor S whose elements
are chosen so that the only sets of its elements which sum
to 1 correspond to the slices of the tensor. The non-zero ele-
ments of S occur along the main diagonal and the diagonal
of the last slices in each dimension. The elements along the
main diagonal (blue and purple) have value close to 1. The
remaining elements (red) (Si;x1=n, Si;x2=n, . . . , Si;xd=n)
are small enough so that when paired with the related ele-
ment on the main diagonal (Sii...i), exactly d − 1 of them
are needed for the set to sum to 1, but they are large enough
that taking them with a previous element on the main diago-
nal has sum more than 1.

We build a tensor T which ensures that every n-partition
of the elements of the tensor M = S+T where each set has
sum 1 corresponds to aligned slices. The value of non-zero
elements of T depend on powers of a small ε. The slices of
T all have total sum of 0, and all negative elements of T
occur only where S has positive value (red). Thus for small
enough ε, M has only non-negative values. The key compo-
nent to the construction of T is that exactly one of the (green)
elements of {Ti;x1=(i+1), Ti;x2=(i+1), . . . , Ti;xd=(i+1)} is in
the slice Tj(i + 1) for all j ∈ [d]. When a partition
picks a set based on slice Mj(1), it also excludes one of
{S1;x1=n, S1;x2=n, . . . , S1;xd=n}. This in turn enforces that
the corresponding element T1;xj=2 is in the slice Tj(2).

We next separate agents into d groups of at least two
agents each: P1, P2, . . . Pd. Agents within each group per-
turb M slightly so that they have a unique n-partition of
the elements of M ′ where every set has sum 1. Specifically,
agents in group Pj perturb the non-zero elements of the slice
Mj(6) so that Mnn...n is the only element with positive per-
turbation (if all other perturbations are small enough, M ′ has
only non-negative elements).

We now construct an instance I = 〈N,M, V 〉 where M
is the set of goods with non-zero value from the tensor M ′,
and vi is defined by the values of M ′ for each agent. Since
every agent can partition M ′ so that there are n sets of ele-
ments which have sum 1, MMSi = 1 for all agents. How-
ever, in order to receive value 1, each agent must take a slice
Mj(i) according to their group (Pj). Since only one set of
slices may be taken at a time, only one group and the ad-
ditional agent who receives the last slice (and thus element
Mnn...n) receive their MMS value. An optimal-MMS allo-
cation, guarantees λ∗(I) ≥ 1− ε̃ where ε̃ is the largest neg-
ative perturbation made by agents to form M ′. If ε̃ is suffi-
ciently small (e.g. ε̃ is smaller than the difference in sum be-
tween any pair of sets of elements of M ) then the only way
all agents can receive value 1− ε̃ is if all agents receive bun-
dles corresponding to slices of M ′. However, in this case,
we see that only �n

d � + 1 agents receive their MMS for any
optimal-MMS allocation.
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(a) The slices of tensor S.
(b) The shape of tensor T .

Figure 1: Tensor visualizations.

Lastly, we observe that there are a total of 2dn−3d+n =
O(dn) entries of M ′ which have non-zero value.

To ensure that only a constant number of agents receive
their MMS value in any optimal-MMS allocation, we simply
group agents into d = 	n

2 
 groups so that each group has
only 2 agents (one group will have 3 agents if n is odd). As
only one group and a single additional agent is satisfied by
taking slices of the order d tensor along dimension j, a total
of 3 (or 4 if n is odd) agents will eventually receive their
MMS value in any optimal-MMS allocation.
Theorem 2. For any n ≥ 3, there exists an instance with
only O(n2) goods where any optimal-MMS allocation guar-
antees 3 (4 if n is odd) agents their MMS value.

Conclusions and future work

While optimal-MMS is a desirable approximation of the
MMS guarantee, it can perform poorly when considering the
number of agents receiving their MMS values. One possible
extension of this work is to determine how many agents can
be guaranteed their MMS if we can sacrifice some agents.
Another relevant future direction is to extend our results to
chores where agents have negative values for each object.
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