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Abstract

We synthetically add data leakage to well-known image
datasets, which results in predictions of convolutional neu-
ral networks trained naively on these spoiled datasets becom-
ing wildly inaccurate. We propose a method, dubbed Mask-
Enhanced Training, that automatically identifies the possible
leakage and makes the classifier robust. The method enables
the model to focus on all features needed to solve the task,
making its predictions on the original validation set accurate,
even if the whole training dataset is spoiled with the leakage.

Introduction

Data leakage is the phenomenon of a machine learning
model using additional information during training that
would not be available at inference time (Kaufman et al.
2012). Since the inner workings of neural-network-based
classifiers remain difficult to understand (Ribeiro, Singh,
and Guestrin 2016), it is of great importance to find solutions
that alleviate the problem of data leakage. The most popular
approaches consist of making models explainable (Ribeiro,
Singh, and Guestrin 2016). However, such methods require
human evaluation, which is usually expensive.

In this paper, we first synthetically add data leakage to
CIFAR-10 (Krizhevsky 2009) and Tiny ImageNet (Brendel
et al. 2018) by overwriting several pixels to encode ground-
truth labels. A naively trained convolutional neural network
is not robust to this leakage and fully focuses on it, ignoring
the rest of the image. This leads to predictions on original
images being wildly inaccurate.

Then, we propose a method which allows classifiers to
pick up not only the most significant features, but also oth-
ers that may aid classification. As a result of applying our
method the aforementioned data leakage does not dominate
over other features and the trained classifier is able to pro-
vide accurate predictions for original images.

The backbone of our method is to train a classifier using
not only the training set provided, but also a modified ver-
sion, where the pixels aiding current predictions are masked.
Hence, in case of a leakage, the additional information will
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be masked and the model will be trained to perform well on
unspoiled images.

Identifying pixels which aid classification (using, e.g.,
saliency maps) is a fruitful research direction in itself (Si-
monyan, Vedaldi, and Zisserman 2013). Recently, Żołna,
Geras, and Cho (2019) proposed the CASME method that
simultaneously trains a classifier and a masker, which iden-
tify the most important pixels. We show that the proposed
setup can be leveraged to produce classifiers robust to syn-
thetically added leakages.

Mask-Enhanced Training

We adapt the aforementioned CASMEmethod. In the original
algorithm the saliency extractor (or masker) is not strongly
coupled with any specific classifier. However, as we are in-
terested in the final classifier performance and not the quality
of the saliency maps, we consider only the last iteration of
the classifier.

Our method, which we call Mask-Enhanced Training
(MET), resembles the adversarial training procedure of
GANs (Goodfellow et al. 2014), where the classifier takes
the role of the discriminator and the masker generates
saliency maps to fool the classifier’s predictions. The masker
is constantly improving in order to identify the most impor-
tant part of the image that the current iteration of the classi-
fier relies on, whereas the classifier is getting better and bet-
ter at providing accurate predictions when masked images
are input.

Experiments and Results

Architecture and training

For the classifier we used the ResNet18 (He et al. 2016) ar-
chitecture with a publicly available set of hyperparameters1.
The model achieved 90.09% accuracy after 400 epochs on
CIFAR-10 and 53.55% accuracy after 90 epochs on Tiny
ImageNet, which resembles previous results in the literature
for this model size.

Our masker follows an encoder-decoder architecture, as
advocated by Żołna, Geras, and Cho (2019), where the en-
coder shares its parameters with the classifier.

1https://github.com/kuangliu/pytorch-cifar/
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Synthetic leakage

The synthetic leakage in our experiments consists of a few2

pixels in the top left corner of each image, containing the
binary representation of the class of a given image. See Fig-
ure 1 for examples of images with synthetic leakages.

Figure 1: Three versions of the same image. On the left is
the original. In the middle image the binary representation is
encoded in the top left corner. In the right image the leakage
is covered by the predicted mask. Best viewed in color.

In this work, we focus on the extreme case where all im-
ages from training data are spoiled (i.e., the leakage is al-
ways present). The resulting classifiers achieve perfect ac-
curacy on the respective spoiled validation sets, but (unsur-
prisingly) their predictions on the original validation sets are
no better than chance – they are not robust at all.

MET performance

When MET is applied, the classifier is exposed not only to
the original training set, but also to its masked version. At
inference time, however, we are interested in its performance
on original validation images, which are not spoiled. This
can be a problem, because the model can wrongly assume
that leaked information is available when unmasked input is
provided, even if the image is not spoiled. Therefore, in the
rest of our experiments we report the accuracy on both the
original validation set and on its masked version. We note
that this procedure can be applied in practice, as our training
procedure results in both a classifier and a paired masker.

Oracle We can leverage the fact that our leakage is syn-
thetically added and test how MET would work in case of
an oracle masker. Here we hand-code the masker to mask
only the part of the image that contains the encoded label.
We note that the oracle masker is only a tool that we use to
show how the idea of training on masked images performs
when masks are concentrated on the encoded label only.

MET In a realistic setting we would not have access to
these locations, but they would be given by training of MET.
The comparison of the two methods is shown in Table 1.

Table 1: Comparison of oracle and trained masker accuracy
on both the masked and unmasked validation set.

CIFAR-10 Tiny ImageNet
Masker Unmasked Masked Unmasked Masked

Oracle 76.53 84.15 46.46 53.02
MET 74.39 83.39 42.41 46.83

Our method is able to make the classifier robust to leak-
ages. Even though only the spoiled training set is provided,

2�logN�, where N is the number of classes.

both methods perform almost as good as when trained on the
original unspoiled dataset. The oracle masker only slightly
outperforms the trained one. The idea of using masked im-
ages to enhance classifier robustness proved to work well.

Sensitivity to λR hyperparameter

The average size of masks is directly controlled by the λR

hyperparameter (Żołna, Geras, and Cho 2019). We con-
ducted an experiment on CIFAR-10 to check MET’s sen-
sitivity to the aforementioned hyperparameter. We are in-
terested in average mask size and final performance on the
original validation set. The results are presented in Table 2.

Table 2: Impact of different λR values for CIFAR-10.
Average Accuracy

λR mask size Unmasked Masked

1 1.1% 64.0 80.33
10 0.8% 74.39 83.39
100 0.7% 57.47 76.21

The method is not sensitive to the λR value and precisely
identifies the leakage, which covers around 0.4%. The best
results are achieved for the default value (λR = 10).

Conclusion

Our method, MET, makes the masker detect leakage pixels,
which allows the classifier to not overvalue them in the fu-
ture. The resulting classifier achieves very high performance
despite training on the spoiled dataset only. On top of that,
masks provided by the masker can be analysed by a human
to distinguish potential leakages from genuine data.
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