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Abstract

In this paper, we present a keyphrase generation approach
using conditional Generative Adversarial Networks (GAN).
In our GAN model, the generator outputs a sequence of
keyphrases based on the title and abstract of a scien-
tific article. The discriminator learns to distinguish between
machine-generated and human-curated keyphrases. We eval-
uate this approach on standard benchmark datasets. Our
model achieves state-of-the-art performance in generation of
abstractive keyphrases and is also comparable to the best per-
forming extractive techniques. We also demonstrate that our
method generates more diverse keyphrases and make our im-
plementation publicly available1.

Introduction
Keyphrases are employed to capture the most salient topics
of a long document and are indexed in databases for conve-
nient retrieval. Researchers annotate their scientific publica-
tions with high quality keyphrases to ensure discoverability
in large scientific repositories. Keyphrases could either be
extractive (part of the document) or abstractive. Keyphrase
generation is the process of predicting both extractive and
abstractive keyphrases from a given document. This process
is similar to abstractive summarization but instead of a sum-
mary the models generate keyphrases.

Researchers have achieved considerable success in the
field of abstractive summarization using conditional-GANs
(Wang and Lee 2018). There has also been growing inter-
est in deep learning models for keyphrase generation (Meng
et al. 2017; Chan et al. 2019). Inspired by these advances,
we propose a new GAN architecture for keyphrase genera-
tion where the generator produces a sequence of keyphrases
from a given document and the discriminator distinguishes
between human-curated and machine-generated keyphrases.

Proposed Adversarial Model
As with most GAN architectures, our model also consists of
a generator (G) and discriminator (D), which are trained in
an alternating fashion (Goodfellow et al. 2014).
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1Code available at https://github.com/avinsit123/keyphrase-gan

Generator - Given a document d = {x1, x2, ..., xn}, where
xi is the ith token, the generator produces a sequence of
keyphrases: y = {y1, y2, ..., ym}, where each keyphrase
yi is composed of tokens y1i , y

2
i , ..., y

li
i . We employ catSeq

model (Yuan et al. 2018) for the generation process, which
uses an encoder-decoder framework: the encoder being a
bidirectional Gated Recurrent Unit (bi-GRU) and the de-
coder a forward GRU. To incorporate the out-of-vocabulary
words, we use a copying mechanism (Gu et al. 2016). We
also make use of attention mechanism to help the generator
identify the relevant components of the source text.
Discriminator - We propose a new hierarchical-attention
model as the discriminator, which is trained to distinguish
between human-curated and machine-generated keyphrases.
The first layer of this model consists of m+1 bi-GRUs. The
first bi-GRU encodes the input document d as a sequence of
vectors: h = {h1, h2, ..., hn}. The other m bi-GRUs, which
have the same weight parameters, encode each keyphrase as
a vector: {k1, k2, ..., km}. We then use an attention-based
approach (Luong, Pham, and Manning 2015) to build con-
text vectors cj for each keyphrase, where cj is a weighted
average over h. By concatenating cj and kj , we get a con-
textualized representation ej = [cj ; kj ] of keyphrase yj .

The second layer of the discriminator is another bi-GRU
which consumes the document representation h and the
keyphrase representations e. The final state of this layer is
passed through one fully connected layer (Wf ) and sigmoid
transformation to get the probability that a given keyphrase
sequence is human-curated.

st =

{
GRU(ht, st−1), for 1 ≤ t ≤ n

GRU(et−n, st−1), for n+ 1 ≤ t ≤ n+m

R(yi) = D(yi) = σ(Wfsi+n)
GAN training - For a given dataset (S), which contain
the documents and corresponding keyphrases, we first pre-
train the generator (G) using Maximum Likelihood Esti-
mation. We then use this generator to produce machine-
generated keyphrases for all documents in S. These gener-
ated keyphrases along with the curated keyphrases are used
to train the first version of the discriminator (D).

We then employ policy gradient reinforcement learning
to train the subsequent versions of G. We freeze the weight
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Figure 1: Schematic of Proposed Discriminator(D)

parameters of D and use it for reward calculation to train a
new version of G. The reward for keyphrase is obtained from
the last m states of the second bi-GRU layer in D (see Figure
1). The gradient update is given as:

�RG =
∑m

i=1[D(yi)−B]�φ φ(yi)

φ(yi) = log
∏li

j=1 G(yji |y1:j−1
i , y1:i−1, x)

where B is a baseline obtained by greedy decoding of
keyphrase sequence. The resulting generator is then used to
create new training samples for D. This process is continued
till G converges.

Experiments and Results
We trained the proposed GAN model on KP20k dataset
(Meng et al. 2017) which consists of 567,830 samples for
training, 20,000 each for testing and validation. Each sam-
ple consists of an abstract, title, and the corresponding
keyphrases of a scientific article. We evaluated the model
on four datasets: Inspec, NUS, KP20k, and Krapivin, which
contain 600, 211, 20,000, and 800 test samples respectively.
For training G, we used Adagrad optimizer with learning
rate ≈ 0.0005. We compare our proposed approach against
2 baseline models - catSeq (Yuan et al. 2018), RL-based cat-
Seq Model (Chan et al. 2019) in terms of F1 scores as ex-
plained in (Yuan et al. 2018). The results, summarized in Ta-
ble 1, are broken down in terms of performance on extractive
and abstractive keyphrases.

For extractive keyphrases, our proposed model performs
better than the pre-trained catSeq model on all datasets but is
slightly worse than catSeq-RL except for on Krapivin where
it obtains the best F1@M of 0.37. On the other hand, for
abstractive keyphrases, our model performs better than the
other two baselines on three of four datasets suggesting that
GAN models are more effective in generation of keyphrases.

We also evaluated the models in terms of α-nDCG@5
(Clarke et al. 2008). The results are summarized in Table 2.
Our model obtains the best performance on three out of the
four datasets. The difference is most prevalent in KP20k, the
largest of the four datasets, where our GAN model (at 0.85)
is nearly 5% better than both the other baseline models.

Conclusion
In this paper, we propose new GAN architecture for
keyphrase generation. The proposed model obtains state-of-
the-art performance in generating abstractive keyphrases. To
our knowledge, this is the first work that applies GANs to
keyphrase generation problem.

Model Score Inspec Krapivin NUS KP20k
Catseq(Ex) F1@5 0.2350 0.2680 0.3330 0.2840

F1@M 0.2864 0.3610 0.3982 0.3661
catSeq-RL(Ex.) F1@5 0.2501 0.2870 0.3750 0.3100

F1@M 0.3000 0.3630 0.4330 0.3830
GAN(Ex.) F1@5 0.2481 0.2862 0.3681 0.3002

F1@M 0.2970 0.3700 0.4300 0.3810
catSeq(Abs.) F1@5 0.0045 0.0168 0.0126 0.0200

F1@M 0.0085 0.0320 0.0170 0.0360
catSeq-RL(Abs.) F1@5 0.0090 0.0262 0.0190 0.0240

F1@M 0.0017 0.0460 0.0310 0.0440
GAN(Abs.) F1@5 0.0100 0.0240 0.0193 0.0250

F1@M 0.0190 0.0440 0.0340 0.0450

Table 1: Extractive and Abstractive Keyphrase Metrics

Model Inspec Krapivin NUS KP20k
Catseq 0.87803 0.781 0.82118 0.804
Catseq-RL 0.8602 0.786 0.83 0.809
GAN 0.891 0.771 0.853 0.85

Table 2: α-nDCG@5 metrics
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