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Abstract

Consider a natural language sentence describing a specific
step in a food recipe. In such instructions, recognizing ac-
tions (such as press, bake, etc.) and the resulting changes in
the state of the ingredients (shape molded, custard cooked,
temperature hot, etc.) is a challenging task. One way to cope
with this challenge is to explicitly model a simulator module
that applies actions to entities and predicts the resulting out-
come (Bosselut et al. 2018). However, such a model can be
unnecessarily complex. In this paper, we propose a simpli-
fied neural network model that separates action recognition
and state change prediction, while coupling the two through
a novel loss function. This allows learning to indirectly in-
fluence each other. Our model, although simpler, achieves
higher state change prediction performance (67% average ac-
curacy for ours vs. 55% in (Bosselut et al. 2018)) and takes
fewer samples to train (10K ours vs. 65K+ by (Bosselut et al.
2018)).

Introduction

Understanding actions in sentences and the resulting
changes in the state of the entities is still a challenging task
in NLP. This is due to the various causal factors involved and
necessary common-sense knowledge for correct inference of
the actions and states. Recently, (Bosselut et al. 2018) intro-
duced a novel neural process network, specifically designed
to understand procedural language with the goal of model-
ing action dynamics and predicting their effects on entities.
However, they had to train their model on a set of over 65K
recipes selected from their whole 120K dataset under cer-
tain rules. Their proposed model achieved 55% accuracy on
the test set in predicting the state change in the recipe sen-
tences. This is somewhat limited performance, and further-
more, their model was fairly complex, with encoding, action
selection, entity selection, state prediction, and action simu-
lation.

To tackle these problems, we introduce a new deep neu-
ral network model with a much more concise architecture,
and aim at solving a main task that is to correctly recognize
actions and predict state changes in a sentence of a recipe.
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Also, we contribute a novel cost function. Training on any
small randomly selected subset (10K samples) of the 65K,
our model achieves an average state change prediction accu-
racy of 67% on the test set of (Bosselut et al. 2018), which
is an improvement of 12% over their results.

Methodology

Our model is built on Recurrent Neural Networks (RNN,
Graves et al. 2006) with Gated Recurrent Units (GRU, Cho
et al. 2014). In our design, three different types of neural net-
work layers are used: Dynamic RNN (encoder), MLP (de-
coder), and predictor. We find that this simple architecture is
sufficient for action language understanding.

We encode each word in a sentence with a one-hot vec-
tor/code (Hinton et al. 1984) and count a whole sequence of
vectors of words that are generated by encoding to produce
the input representation. That is, in our model, we do not use
any word embedding.

We use two different metrics, loss function and error func-
tion, for training control. We train our model by loss function
and validate the model by error function.

We design the loss function under the scope of tangent.
Let Y,P ∈ [0, 1]m (finite dimensional space) and Y is a la-
bel, P is a prediction for Y, then the loss function is defined
as

l(Y,P) =
i=m∑

i=1

10× tan(
π

2
|Y(i)−P(i)|). (1)

Then, l(Y,P) = 0 iff Y = P due to the nonnegativity of
tan((π2 |X|). With the help of the following property

tan(|x|) ≥ |x|, x ∈ (−π

2
,
π

2
), (2)

preservation of triangle inequality and convexity can be ver-
ified.

We define an error function with the help of cross entropy
and the error is expected to serve as an accuracy indicator
that will decide when to save our model during training.
Cross entropy for discrete topology on X is well-defined as:

H(p, q) = −
∑

x∈X
p(x) log2 q(x). (3)
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Our error function ε(Y,P) is defined by

ε(Y,P) = |H(PP, QY)−H(QY, QY)|, (4)

where PP and QY denotes probability mass function (pmf)
generated by the predicted vector P and the label Y, re-
spectively; and a Softmax function can implement the gen-
eration of PP and QY. Qualitatively, the more accurately a
neural network predicted, a lower ε should be achieved. This
is guaranteed by

|H(PP, QY)−H(QY, QY)|
≤

∑

x∈X
|(QY(x)− Pp(x)) log2 QY(x)|

≤ max
x∈X

{| log2 QY|}
∑

x∈X
|QY − PP|,

where the last ≤ is due to bounded | log2 QY| for finite di-
mensions. So a continuity will follow. This continuity war-
rants the use of it as an accuracy indicator for model saving.

Experiments

This section describes how the experiments are conducted.

Data Source & Data Selection

We used the dataset and corpora from (Bosselut et al. 2018).
It has a total of 120K samples. Bosselut et al. used carefully
filtered 65,815 samples from the whole 120k for training,
and 693 samples for testing. Besides, they provided corpora
(token libraries) for vocabularies of sentences(text), verbs
and state changes.

In our experiment, we randomly selected a 10K subset
(15%) from their 65,815 samples and separate this 10k into
9k for training loss function and 1k for validating error func-
tion. We use their corpora for text, verb and state change. We
add “UNK” (unknown) type to each corpus for vocabulary
out of their corpora.

Encoding/Decoding

We directly feed a one-hot word vector (no embedding) into
a GRU cell each time. We pad each sentence to the maxi-
mum length of sentences in the recipe. Our model has two
encoding layers each with 1600 units and 800 units, respec-
tively. Both verb decoding and state change decoding are an-
alyzed by an independent MLP with 500 hidden units. Each
MLP is connected to the final state of the GRU encoding
layer.

Loss Function

To ovecome finite word-length effect, a modified loss,

l(Y,P) =
i=m∑

i=1

10× tan(0.499π × |Y(i)−P(i)|), (5)

is applied in practice and turn l(Y,P) into a bounded func-
tion.

Two loss functions, action loss and state loss, are defined
and are summed to produce total loss, based on which learn-
ing is conducted.

Training, Validating, Testing

Training is conducted on a GPU with the RMSProp opti-
mizer (Tieleman and Hinton 2012) under a learning rate of
0.0001. We train total loss on 9K samples for 201 epochs
within which we validate error function on 1K samples ev-
ery two epochs. If a lower error monitored during training,
the model would be stored.

After training finished, the trained model will be tested
on (Bosselut et al. 2018)’s 693 test set. One missing toler-
ance, compatible with their benchmark, is applied. It allows
a prediction to have one missing item at most when com-
pared with the label. Accuracy is measured as percentage of
sentence predictions satisfying the rule.

Results

We independently repeat our experiments for 4 times and re-
port accuracies on both action recognition and state change
predition (Table 1). Note that (Bosselut et al. 2018) does not
report the action accuracy.

Table 1: Test our model on Bosselut’s 693 test set
Our experiment No. 1 2 3 4

Action acc (%) 81.2 80.9 80.9 80.9
State acc (%) 66.6 66.6 67.0 67.2

Bosselut’s Model Action acc (%) N/A
State acc (%) 55

Our results significantly outperform those in (Bosselut et
al. 2018) under the same benchmark while using only a 15%
subset of data for training.

Conclusion
We contribute a lightweight neural network with a novel cost
function. With an improvement of 12% and significantly
smaller training data used, our model outperforms a previ-
ous language understanding model where the goal is to rec-
ognize verbs and predict state changes.
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