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Abstract

Applications of machine learning in biomedical prediction
tasks are often limited by datasets that are unrepresentative
of the sampling population. In these situations, we can no
longer rely only on the the training data to learn the relations
between features and the prediction outcome. Our method
proposes to learn an inductive bias that indicates the rele-
vance of each feature to outcomes through literature mining
in PubMed, a centralized source of biomedical documents.
The inductive bias acts as a source of prior knowledge from
experts, which we leverage by imposing an extra penalty for
model weights that differ from this inductive bias. We empir-
ically evaluate our method on a medical prediction task and
highlight the importance of incorporating expert knowledge
that can capture relations not present in the training data.

Introduction

Supervised learning models have become a popular tool
for solving biomedical prediction problems (Coudray et al.
2018, e.g.) due to their good performance and to the avail-
ability of new datasets. While training these models, reg-
ularization (e.g. L1 (Tibshirani 1996) and L2 (Hoerl and
Kennard 1970)) is commonly used to prevent model over-
fitting. However, these approaches are confined in the sense
that their knowledge is limited to what can be extracted from
the given data. This can be a problem when the dataset is not
representative of the sampling population. The “healthy vol-
unteer effect” (Fry et al. 2017) is a common example, where
people volunteering for health-related research studies tend
to be more health-conscious than nonparticipants. The in-
formation contained in such dataset would therefore be in-
complete for training a model to predict in the population of
interest. In addition, resulting models could be hard to inter-
pret if they failed to capture dynamics expected by experts.
This motivates us to leverage prior knowledge about feature
and outcome relations, which has already been well studied
by experts in the biomedical disciplines.

The general idea is to take advantage of prior knowledge
extracted from literature mining in PubMed1, a search en-
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1https://www.ncbi.nlm.nih.gov/pubmed/

gine containing 29 million biomedical documents from var-
ious sources including life science journals. We suggest to
learn how important each feature is for the prediction task
by querying PubMed and use this as an inductive bias on
the learned model. We investigate ways to incorporate such
an inductive bias (corresponding to expert knowledge) in the
regularization process. Regularization with prior knowledge
is not a new idea, for example, L1 and L2 can be interpreted
as having a Laplace and Gaussian prior respectively (Robert
2014). In this work, we propose an approach which leverage
the expert knowledge using a regularization term aiming to
minimize the Kullback-Leibler (KL) divergence between the
model weights distribution and the inductive bias distribu-
tion. We evaluate this approach on a medical prediction task
to highlight the importance of incorporating expert knowl-
edge that can capture relations not present in the training
data.

Literature Mining of Inductive Bias

PubMed was designed to be queried as a centralized knowl-
edge source for biomedical experts, thus appearing as an ap-
propriate source of expert knowledge for biomedical predic-
tion tasks. We obtain our expert knowledge in two steps: 1)
extracting relevant papers and 2) quantifying the relation be-
tween each feature and the outcome.
Step 1) We first find the corresponding Medical Subject
Headings (MeSH) in PubMED for the task. A MeSH would
contain documents relevant to the prediction task, and can
be easily obtained through PubMed’s API.
Step 2) The relation between a feature and the outcome is
quantified by counting occurrences of its keywords in all
papers. More specifically, we first obtain a set Si which
contains ki keywords 2 for feature i using medical concept
extraction tool quickUMLS (Soldaini and Goharian 2016).
Then, for each feature i, we sum the number of occurrences
of each keywords in Si retrieved in all the abstracts and titles
that subside in the selected MeSH. These number of occur-
rences, which we denote αi, serve as a proxy for measuring
the relevancy between the feature and the prediction task. At
this point, we have a vector α = (αi)i=1,..N that contains

2See Supp. for details and benefits of this approach.
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a relevancy score for each of the features, where N denotes
the number of features in the dataset. Now, we want to in-
corporate that knowledge within a classifier.

Regularizing with Inductive Bias

We aim at preventing the learned model from diverging too
much from the expert knowledge. To this end, we use a KL
divergence penalization on the distribution of attention over
features learned by the model and the one obtained through
literature mining. These comparable distributions are ob-
tained by transforming the model weights wi and relevance
scores, respectively.
Transforming model weights The normalized model
weights distribution Z̃ = [z̃1, . . . , z̃N ] over features is com-
puted as follows. We take into account cases where categor-
ical feature are one-hot encoded by taking the average:

z̃i =
ri∑
(ri)

,where (1)

ri =

⎧⎨
⎩
|wi| if feature i was not one hot encoded;
∑

j∈oi
|wj |

|oi| if oi is the set of one hot encodings for
feature i.

Note that we assume a model which learns exactly one scalar
weight for each encoded feature. However, the above can
also be easily extended to models learning M ≥ 1 weights
for each encoded feature by taking the average in Eq. 1.
Transforming relevancy scores We compute a normalized
relevancy distribution Z = [z1, ..., zN ] over features as:

zi =
αi/ki∑N

j=1(αj/kj)
. (2)

Inductive Bias Regularization Let LE denote the error loss
(e.g. binary cross-entropy loss) and let λ ≥ 0 be a hyper-
parameter, we propose the following regularized loss:

L = LE + λDKL(Z||Z̃). (3)

Experiments

We investigate the effectiveness of the proposed strategy
using experiments on a cardiovascular disease prediction
dataset (Ulianova 2019) containing 70,000 individuals and
11 features3. We craft synthetic experiments where training
data is such that the relationship between the most impor-
tant feature (i.e. systolic blood pressure, SBP) and the out-
come cannot be detected4. We then compare logistic regres-
sion models5 with no regularization, traditional L1 regular-
ization, and inductive bias regularized loss (Eq. 3). Training,
validation6, and testing sets contain 9237, 9237, and 51526
samples, respectively.

3See Supp. for datasets details.
4See Supp. for data split and SBP identification details
5When sufficiently accurate in terms of prediction, its coeffi-

cients are generally treated as a gold standard for interpretability.
6See Supp. for hyper-parameters details.

Table 1: Test accuracy on cardiovascular dataset
Model Accuracy learnt SBP weight
No regularization 0.323 -0.011
L1 0.323 -0.011
With inductive bias 0.748 0.127

Results

Table 1 shows the preliminary results. As expected, both no
regularization and standard L1 regularization fail to capture
the link (invisible from training data) between SBP and the
outcome. With inductive bias, we are able to learn the rela-
tionship between the feature and outcome, resulting in sig-
nificantly improved performance. Additional results investi-
gating the benefits of using QuickUMLS instead of feature
names directly are provided in Supp.

Conclusion and Future Works

We have proposed a new method for incorporating induc-
tive bias obtained from literature mining. Preliminary em-
pirical results show the potential of our approach when the
dataset is unrepresentative of the sampled distribution. One
limitation of the method is that it requires good descriptive
identifiers for all features, which are then used to find their
keywords. We also assume that each prediction task always
has a corresponding MeSH in PubMed. These are not the
case for all datasets and tasks.

As part of future works, we will apply the method to larger
datasets, and investigate other ways to incorporate the induc-
tive bias such as using the Wasserstein metric.
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