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Abstract

Imitation learning provides a family of promising methods
that learn policies from expert demonstrations directly. As
a model-free and on-line imitation learning method, gener-
ative adversarial imitation learning (GAIL) generalizes well
to unseen situations and can handle complex problems. In
this paper, we propose a novel variant of GAIL called GAIL
from failed experiences (GAILFE). GAILFE allows an agent
to utilize failed experiences in the training process. More-
over, a constrained optimization objective is formalized in
GAILFE to balance learning from given demonstrations and
from self-generated failed experiences. Empirically, com-
pared with GAIL, GAILFE can improve sample efficiency
and learning speed over different tasks.

Introduction
Imitation learning provides a promising way for an agent
to learn a decision model by imitating the expert demon-
strations, and has achieved remarkable successes in a wide
range of problems. Generative adversarial imitation learn-
ing (GAIL) (Ho and Ermon 2016) is a state-of-the-art imi-
tation learning method, which is able to solve complex and
high-dimensional problems. However, it needs more expert
demonstrations as the environment becomes more comple-
cated. But in some areas it is difficult to get perfect expert
demonstrations. In the process of collecting expert demon-
strations, there are many failed experiences which are dis-
carded in the end. During the training process, the agent also
generates lots of failed experiences. However, GAIL is not
able to make good use of these failed experiences. Besides,
GAIL requires a significant number of interactions with
the environment to achieve promising learning performance
because of the nature of model-free and on-line learning,
which makes it even harder to be applied in practice. Inverse
reinforcement learning (IRL) from failure (Shiarlis, Mes-
sias, and Whiteson 2016) learns a policy using both success-
ful and failed demonstrations. However, IRL algorithms re-
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quire reinforcement learning in an inner loop, which makes
it extremely expensive to run.

In this paper, with the aim of closing this gap and scal-
ing well to real-world problems, we propose a novel frame-
work on top of GAIL, i.e., GAIL from failed experiences
(GAILFE). Unlike GAIL, GAILFE takes advantage of failed
experiences. We store failed experiences that should be
avoided by the agent in a replay buffer, and replay the failed
experiences in the training process. In practice, there is a
challenge in balancing learning from the expert demonstra-
tions and the failed experiences. In our method, we formal-
ize a constrained optimization objective to solve it.

Method
Consider how an agent can learn a good policy with only
a set of expert demonstrations τE. Here, τE is a set of tra-
jectories, each of which consists of a sequence of state-
action pairs. In GAIL, an agent mimics the behavior of ex-
pert by matching the distribution of generated state-action
pairs ρπθ

(s, a) with expert’s distribution ρπE
(s, a). The for-

mal objective of GAIL can be denoted as:
min
θ

max
ω

JGAIL = E(s,a)∼πθ
[log(Dω(s, a))]+

E(s,a)∼πE
[log(1−Dω(s, a))] + λHH(πθ)

(1)

where Dω denotes the binary discriminator, parameterized
by ω. The discriminator tries to distinguish the expert state-
action pairs from the ones generated by policy πθ. H(πθ) �
Eπθ

[− log πθ(a|s))] denotes the discounted causal entropy
of πθ (Bloem and Bambos 2014) and λH is the coefficient on
it. The policy parameterized by θ plays the role as a gener-
ator which generates samples to confuse discriminator. The
optimization over GAIL objective is performed by alternat-
ing between increasing JGAIL with respect to the discrimina-
tor parameters ω, and conducting a trust region policy op-
timization (TRPO) (Schulman et al. 2015) step to decrease
JGAIL with respect to the policy parameters θ using the re-
ward function − log(Dω(s, a)).

The framework of GAILFE is a little different from that
of GAIL in that it adds a replay buffer βF to store failed ex-
periences. In each iteration, we randomly sample a batch of
samples from the replay buffer for updating the discrimina-
tor. We assume the access to an annotator who processes the
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prior knowledge of which trajectory is failure. We believe
that such an assumption can be easily satisfied, because the
prior knowledge of failure is usually common sense. In prac-
tice, our method only stores last N failed trajectories in the
replay buffer.

By using failed experiences to train an discriminator, it
can make the discriminator more sensitive to failed behav-
iors. Then the discriminator gives rewards as little as pos-
sible to the agent when it generates such failed state-action
pairs. The process of training a discriminator with failed ex-
periences can be formulated as:

E(s,a)∼βF
[log(Dω(s, a))] > ZF (2)

where ZF is a variable that adjusts the intensity of punish-
ment upon failed experiences. Actually, the policy update in
GAILFE is consistent with GAIL. Thus, the reward function
for updating a policy is also − log(Dω(s, a)). So the greater
ZF is, the less rewards the agent receives when generating
such failed state-action pairs. Combining it with GAIL, we
get a constrained objective of GAILFE:

min
θ

max
ω

JGAIL s.t. E(s,a)∼βF
[log(Dω(s, a))] > ZF (3)

The optimization problem of GAILFE can be solved by
further transforming it to the Lagrangian duality:

minθmaxωL(πθ, Dω, λF )

= JGAIL + λF {E(s,a)∼βF
[log(Dω(s, a))]− ZF } (4)

where λF denotes the Lagrangian multiplier and it plays a
key role in balancing learning from both expert demonstra-
tions and failed experiences.

In our algorithm, the update of GAILFE alternates be-
tween increasing L(πθ, Dω, λF ) with respect to ω, and de-
creasing L(πθ, Dω, λF ) with respect to θ.

Experiments
In this section, we compare the performance of GAILFE
with GAIL on two physics-based control tasks simulated
with MuJoCo, HalfCheetah and Hopper. Each task comes
with a reward function defined in the OpenAI Gym. For
these tasks, we generate expert demonstrations by running
the proximal policy optimization (PPO) algorithm (Schul-
man et al. 2017) on these reward functions. When we get
expert demonstrations, there will include some failed expe-
riences. We add the failed experiences to the replay buffer.
In these experimental environments, we use 30 expert tra-
jectories for both of them, and each trajectory contains 1000
state-action pairs. GAIL trained with expert demonstrations
only, and GAILFE trained with both expert demonstrations
and failed experiences. The neural networks used for rep-
resenting a policy and a discriminator are built with 2 hid-
den layers, where there are 100 hidden units for each hidden
layer with tanh activation. In order to satisfy the demand of
significance test, we set up 3 different seeds for each task.
The hyper-parameters N , ZF are set as 1500 and log(1/2),
respectively.

The performance of our method is examined based on the
learning curves presented in Figure 1. It is clear that our
method converges faster.

Figure 1: Learning curve of HalfCheetah and Hopper. Each
iteration consists of 1024 time steps.

Conclusion and Future Work
In this paper, we propose a novel algorithm called GAILFE,
which can improve sample efficiency and learning speed.
We use failed experiences generated by an agent in the train-
ing process for training a sensitive discriminator to assign
less rewards to the failed behavior. In this way, the agent
can avoid repeatedly exploring some failed behaviors. As a
future work, we consider adding successful samples that an
agent generated during the training process to expert demon-
strations to further improve sample efficiency.
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