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Abstract

We present a highly effective unsupervised framework for de-
tecting the stance of prolific Twitter users with respect to con-
troversial topics. In particular, we use dimensionality reduc-
tion to project users onto a low-dimensional space, followed
by clustering, which allows us to find core users that are rep-
resentative of the different stances. Our framework has three
major advantages over pre-existing methods, which are based
on supervised or semi-supervised classification. First, we do
not require any prior labeling of users: instead, we create
clusters, which are much easier to label manually afterwards,
e.g., in a matter of seconds or minutes instead of hours. Sec-
ond, there is no need for domain- or topic-level knowledge
either to specify the relevant stances (labels) or to conduct the
actual labeling. Third, our framework is robust in the face of
data skewness, e.g., when some users or some stances have
greater representation in the data. We experiment with dif-
ferent combinations of user similarity features, dataset sizes,
dimensionality reduction methods, and clustering algorithms
to ascertain the most effective and most computationally ef-
ficient combinations across three different datasets (in En-
glish and Turkish). We further verified our results on addi-
tional tweet sets covering six different controversial topics.
Our best combination in terms of effectiveness and efficiency
uses retweeted accounts as features, UMAP for dimension-
ality reduction, and Mean Shift for clustering, and yields a
small number of high-quality user clusters, typically just 2–
3, with more than 98% purity. The resulting user clusters can
be used to train downstream classifiers. Moreover, our frame-
work is robust to variations in the hyper-parameter values and
also with respect to random initialization.

Introduction

Stance detection is the task of identifying the position of a
user with respect to a topic, an entity, or a claim (Mohammad
et al. 2016), and it has broad applications in studying public
opinion, political campaigning, and marketing. Stance de-
tection is particularly interesting in the realm of social me-
dia, which offers the opportunity to identify the stance of
very large numbers of users, potentially millions, on differ-
ent issues. Most recent work on stance detection has focused
on supervised or semi-supervised classification.
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In either case, some form of initial manual labeling of tens
or hundreds of users is performed, followed by user-level su-
pervised classification or label propagation based on the user
accounts and the tweets that they retweet and/or the hashtags
that they use (Magdy et al. 2016; Pennacchiotti and Popescu
2011a; Wong et al. 2013).

Retweets and hashtags can enable such classification as
they capture homophily and social influence (DellaPosta,
Shi, and Macy 2015; Magdy et al. 2016), both of which
are phenomena that are readily apparent in social media.
With homophily, similarly minded users are inclined to cre-
ate social networks, and members of such networks exert so-
cial influence on one another, leading to more homogeneity
within the groups. Thus, members of homophilous groups
tend to share similar stances on various topics (Garimella
2017). Moreover, the stances of users are generally stable,
particularly over short time spans, e.g., over days or weeks.
All this facilitates both supervised classification and semi-
supervised approaches such as label propagation. Yet, exist-
ing methods are characterized by several drawbacks, which
require an initial set of labeled examples, namely: (i) man-
ual labeling of users requires topic expertise in order to prop-
erly identify the underlying stances; (ii) manual labeling also
takes substantial amount of time, e.g., 1–2 hours or more for
50–100 users; and (iii) the distribution of stances in a sam-
ple of users to be labeled, e.g., the n most active users or
random users, might be skewed, which could adversely af-
fect the classification performance, and fixing this might re-
quire non-trivial hyper-parameter tweaking or manual data
balancing.

Here we aim at performing stance detection in a com-
pletely unsupervised manner to tag the most active users on
a topic, which often express strong views. Thus, we over-
come the aforementioned shortcomings of supervised and
semi-supervised methods. Specifically, we automatically de-
tect homogeneous clusters, each containing a few hundred
users or more, and then we let human analysts label each
of these clusters based on the common characteristics of the
users therein such as the most representative retweeted ac-
counts or hashtags. This labeling of clusters is much cheaper
than labeling individual users. The resulting user groups can
be used directly, and they can also serve to train supervised
classifiers or as seeds for semi-supervised methods such as
label propagation.
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Figure 1: Overview of our stance detection pipeline, the op-
tions studied in this paper, and the benefits they offer. In bold
font: best option in terms of accuracy. In bold red: the best
option both in terms of accuracy and computing time.

Our method works as follows (see also Figure 1): given a set
of tweets on a particular topic, we project the most active
users onto a two-dimensional space based on their similar-
ity, and then we use peak detection/clustering to find core
groups of similar users. Using dimensionality reduction has
several desirable effects. First, in a lower dimensional space,
good projection methods bring similar users closer together
while pushing dissimilar users further apart. User visualiza-
tion in two dimensions also allows an observer to ascertain
how separable users with different stances are.

Dimensionality reduction further facilitates downstream
clustering, which is typically less effective and less efficient
in high-dimensional spaces. Using our method, there is no
need to manually specify the different stances a priori. In-
stead, these are discovered as part of clustering, and can be
easily labeled in a matter of minutes at the cluster level,
e.g., based on the most salient retweets or hashtags for a
cluster. Moreover, our framework overcomes the problem of
class imbalance and the need for expertise about the topic.

In our experiments, we compare different variants of our
stance detection framework. In particular, we experiment
with three different dimensionality reduction techniques,
namely the Fruchterman-Reingold force-directed (FD)
graph drawing algorithm (Fruchterman and Reingold 1991),
t-Distributed Stochastic Neighbor Embeddings (t-SNE)
(Maaten and Hinton 2008), and Uniform Manifold Approx-
imation and Projection (UMAP) algorithm (McInnes and
Healy 2018). For clustering, we compare DBSCAN (Ester et
al. 1996) and Mean Shift (Comaniciu and Meer 2002), both
of which can capture arbitrarily shaped clusters. We also ex-
periment with different features such as retweeted users and
hashtags as the basis for computing the similarity between
users. The successful combinations use FD or UMAP for di-
mensionality reduction, Mean Shift for peak detection, and
retweeted accounts to compute user similarity. We also ex-
plore robustness with respect to hyper-parameters and the
required minimum number of tweets and users.

Overall, we experiment with different sampled subsets from
three different tweet datasets with gold stance labels in dif-
ferent languages and covering various topics, and we show
that we can identify a small number of user clusters (2-3
clusters) composed of hundreds of users on average with
purity in excess of 98%. We further verify our results on
additional tweet datasets covering six different controversial
topics.

Our contributions can be summarized as follows:

• We introduce a robust stance detection framework for au-
tomatically discovering core groups of users without the
need for manual intervention, which enables subsequent
manual bulk labelling of all users in a cluster at once.

• We overcome key shortcomings of existing supervised
and semi-supervised classification methods such as the
need for topic-informed manual labeling and for handling
class imbalance and the presence of potential skews.

• We show that dimensionality reduction techniques such
as FD and UMAP, followed by Mean Shift clustering, can
effectively identify core groups of users with purity in ex-
cess of 98%.

• We demonstrate the robustness of our method to
changes in dimensionality reduction and clustering hyper-
parameters as well as changes in tweet set size, kinds of
features used to compute similarity, and minimum num-
ber of users, among others. In doing so, we ascertain the
minimum requirements for effective stance detection.

• We elucidate the computational efficiency of different
combinations of features, user sample size, dimensional-
ity reduction, and clustering.

Background

Stance Classification: There has been a lot of recent
research interest in stance detection with focus on infer-
ring a person’s or an article’s position with respect to a
topic/issue or political preferences in general (Barberá 2015;
Barberá and Rivero 2015; Borge-Holthoefer et al. 2015;
Cohen and Ruths 2013; Colleoni, Rozza, and Arvidsson
2014; Conover et al. 2011b; Fowler et al. 2011; Himel-
boim, McCreery, and Smith 2013; Magdy et al. 2016;
Magdy, Darwish, and Weber 2016; Makazhanov, Rafiei, and
Waqar 2014; Mohtarami et al. 2018; Mohtarami, Glass, and
Nakov 2019; Stefanov et al. 2020; Weber, Garimella, and
Batayneh 2013).

Effective Features: Several studies have looked at fea-
tures that may help reveal the stance of users. This in-
cludes textual features such as the text of the tweets and
hashtags, network interactions such as retweeted accounts
and mentions as well as follow relationships, and pro-
file information such as user description, name, and lo-
cation (Borge-Holthoefer et al. 2015; Magdy et al. 2016;
Magdy, Darwish, and Weber 2016; Weber, Garimella, and
Batayneh 2013). Using network interaction features, specif-
ically retweeted accounts, was shown to yield better results
compared to using content features (Magdy et al. 2016).
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User Classification: Most studies focused on supervised
or semi-supervised methods, which require an initial seed
set of labeled users. Label propagation was used to au-
tomatically tag users based on the accounts they follow
(Barberá 2015) and retweets (Borge-Holthoefer et al. 2015;
Weber, Garimella, and Batayneh 2013). Although it has very
high precision (often above 95%), it has three drawbacks:
(i) it tends to label users who are more extreme in their
views, (ii) careful manipulation of thresholds may be re-
quired, particularly when the initial tagged user set is imbal-
anced, and (iii) post checks are needed. Some of these issues
can be observed in the Datasets section below, where two of
our test sets were constructed using label propagation. Our
method overcomes the latter two drawbacks.

Supervised classification was used to assign stance la-
bels, where classifiers were trained using a variety of fea-
tures such as tweet text, hashtags, user profile informa-
tion, retweeted accounts or mentioned accounts (Magdy
et al. 2016; Magdy, Darwish, and Weber 2016; Pennac-
chiotti and Popescu 2011a). Such classification can label
users with precision typically ranging between 70% and
90%. Rao et al. (2010) used socio-linguistic features that
include types of utterances, e.g., emoticons and abbrevia-
tions, and word n-grams to distinguish between Republi-
cans and Democrats with more than 80% accuracy. Pennac-
chiotti and Popescu (2011a) extended the work of Rao et
al. (2010) by introducing features based on profile infor-
mation (screen name, profile description, followers, etc.),
tweeting behavior, socio-linguistic features, network inter-
actions, and sentiment. It has been shown that users tend to
form so-called “echo chambers”, where they engage with
like-minded users (Himelboim, McCreery, and Smith 2013;
Magdy et al. 2016), and they also show persistent beliefs
over time and tend to maintain their echo chambers, which
reveal significant social influence (Borge-Holthoefer et al.
2015; Magdy et al. 2016; Pennacchiotti and Popescu 2011b).
Duan et al. (2012) used the so-called “collective classifi-
cation” techniques to jointly label the interconnected net-
work of users using both their attributes and their relation-
ships. Since there are implicit links between users on Twit-
ter (e.g., they retweet the same accounts or use the same
hashtags), collective classification is relevant here. Darwish
et al. (2017) extended this idea by employing a so-called
user similarity space of lower dimensionality to improve su-
pervised stance classification. There was a related SemEval-
2016 (Mohammad et al. 2016) task on stance detection, but
it was at the tweet level, not user level.

Dimensionality Reduction and Clustering: A poten-
tial unsupervised method for stance detection may involve
user clustering. Beyond the selection of relevant features
for stance detection, a major challenge for clustering ap-
proaches is the number of features. Indeed, an expert may
be willing to use as many meaningful input features as pos-
sible, expecting the machine to detect automatically the rel-
evant ones for the task at hand. This high-dimensional space
is subject to the curse of dimensionality (Verleysen and oth-
ers 2003): the search space for a solution grows exponen-

tially with the increase in dimensionality as there are many
more possible patterns than in lower-dimensional subspaces;
and the computation time and the memory needed for clus-
tering also grow. Moreover, it has been shown that as dimen-
sionality increases, the distance from any point to the near-
est data point approaches the distance to the furthest data
point (Beyer et al. 1999). This is problematic for clustering
techniques, which typically assume short within-cluster and
large between-cluster distances. We conducted experiments
that involved clustering directly in the high-dimensional fea-
ture space and all of them failed to produce meaningful clus-
ters. On the other hand, most clustering techniques are very
efficient in low-dimensional spaces.

Another issue comes from the need for human experts to
ascertain the validity of the clustering result beyond stan-
dard clustering statistics. For instance, an expert may want
to verify that users belong to the core of separable groups
such that they are good representatives of the groups and
good candidate seeds for possible subsequent classification.

Visualization has come as a natural way to support the
experts using Dimensionality Reduction (DR) or Multi-
Dimensional Projection (MDP) (Nonato and Aupetit 2018).
Different pipelines combining Dimensionality Reduction
and Clustering have been studied (Wenskovitch et al. 2018)
in Visual Analytics in order to support user decision, giving
guidelines to select the best approach for a given applica-
tion. As our primary goal is to support users to check cluster
quality visually and label data based on cluster information,
and given that clustering is more efficient in low dimension-
ality, we decided to first reduce data dimensionality and then
to apply clustering in the projection space.

Among the MDP techniques, the Force Directed (FD)
graph drawing technique (Fruchterman and Reingold 1991),
the t-distributed Stochastic Neighbor Embedding (t-SNE),
(Maaten and Hinton 2008) and the recent Uniform Man-
ifold Approximation and Projection technique (UMAP),
(McInnes and Healy 2018), have been widely used for di-
mensionality reduction. They transform high-dimensional
data into two-dimensional scatter plot representations while
preserving data similarity, and hence possible clusters.

Regarding the clustering techniques that could be used in
the resulting 2D space, we can select them based on their
lower computational complexity, their ability to find groups
with various shapes, and the number of hyper-parameters to
tune. Moreover, we are interested in detecting the core clus-
ters that are likely to generate strong stances, rather than
noisy sparse clusters with low influence. DBSCAN (Ester
et al. 1996) and Mean Shift (Comaniciu and Meer 2002)
are two well-known clustering techniques that satisfy these
constraints and further enable the discovery of core clus-
ters and high-density peaks, respectively, with low compu-
tational complexity and fewer hyper-parameters to tune.

In this work, we explore combinations of (i) relevant in-
put features, namely retweeted tweets, retweeted accounts,
and hashtags, (ii) dimensionality reduction of these input
spaces into two dimensions using FD, t-SNE and UMAP,
and (iii) clustering thereafter using DBSCAN and Mean
Shift, to determine the most efficient pipeline for finding
stance clusters (see Figure 1).
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Finding Stance Clusters

Feature Selection: Given a tweet dataset that has been
pre-filtered using topical words, we take the n most “en-
gaged” users who have posted a minimum number of tweets
in the dataset. Given this sample of users, we compute the
cosine similarity between each pair of users. This similar-
ity can be computed based on a variety of features includ-
ing (re)tweeting identical tweets, which is what is typically
used in label propagation; the hashtags that users use; or
the accounts they retweet. Thus, the dimensions of the fea-
ture spaces given the different features are the number of
unique tweets (feature space T), the number of unique hash-
tags (feature space H), or the number of unique retweeted
accounts (feature space R).

We computed the cosine similarity using each of these
feature spaces independently as well as concatenating all of
them together (below, we will refer to this combination as
TRH). For example, when constructing a user’s sparse fea-
ture vector using retweeted accounts (Feature space R), the
elements in the vector would be all 0 except for the retweeted
accounts, where it would correspond to their relative fre-
quency, i.e., the number of times the user has retweeted each
of them in our dataset divided by the number of times the
user has retweeted any of them. For instance, if the user has
retweeted three accounts with frequencies 5, 100, and 895,
then the corresponding feature values would be 5/1,000,
100/1,000, and 895/1,000, where 1,000 is the sum of the fre-
quencies.

Dimensionality Reduction: We experimented with the
following dimensionality reduction techniques based on the
aforementioned cosine similarity between users:

• FD (Fruchterman and Reingold 1991) minimizes the
energy in the representation of the network as a low-
dimensional node-link diagram, analogous to a physical
system, where edges are springs and nodes bear repulsive
charges such that similar nodes are pulled closer together
and dissimilar nodes are pushed further apart. In our ex-
periments, we used the implementation in the NetworkX
toolkit.1

• t-SNE (Maaten and Hinton 2008) uses the pre-computed
cosine similarity between pairs of users in order to es-
timate the probability for a user to be the neighbor of
another one in the high-dimensional space — the farther
apart they are in terms of cosine similarity, the lower the
probability that they are neighbors. A set of points repre-
senting the users is located in the low-dimensional space
and the same probabilistic matrix is computed based on
the relative Euclidean distances in that projection space.
The position of the points is updated progressively try-
ing to minimize the Kullback-Leibler divergence between
these two probability distributions (Maaten and Hinton
2008). In our experiments, we used the scikit-learn2 im-
plementation of t-SNE.

1http://networkx.github.io/
2https://scikit-learn.org

• UMAP (McInnes and Healy 2018) is similar to t-SNE,
but assumes that the data points are uniformly distributed
on a Riemannian connected manifold with a locally con-
stant metric. A fuzzy topological structure encoded as a
weighted K-Nearest Neighbor graph of the data points is
used to model that manifold and its uniform metric. The
same structure is built in the projection space across the
points representing the data, and their position is updated
to minimize the divergence between these two structures
(McInnes and Healy 2018). UMAP is significantly more
computationally efficient than t-SNE and tends to empha-
size the cluster structure in the projection. We used Leland
McInnes’s implementation of UMAP.3

Clustering: After projecting the users into a two-
dimensional space, we scale user positions in x and y (in-
dependently) between −1 and 1 (as shown in the successful
plot A in Figure 2 and in the less successful plot in Figure 3)
and we proceed to identify cluster cores using the following
two clustering methods (see plot B in Figure 2):

• DBSCAN is a density-based clustering technique which
attempts to identify clusters based on preset density (Es-
ter et al. 1996). It can identify clusters of any shape, but it
requires tuning two hyper-parameters related to clustering
density: ε, which specifies how close the nodes have to be
in order to be considered “reachable” neighbors, and m,
which is the minimum number of nodes required to form
a core set. Points that are not in a core set nor reachable
by any other points are outliers that are not considered as
part of the final clusters. We used the scikit-learn imple-
mentation of DBSCAN.

• Mean Shift attempts to find peaks of highest density
based on a kernel smoothing function (Comaniciu and
Meer 2002), typically using a Gaussian kernel. With a
kernel at each point, each point is iteratively shifted to
the mean (barycenter) of all the points weighted by its
kernel. All points thus converge to the local maximum of
the density nearby them. The kernel’s bandwidth hyper-
parameter determines the number of peaks detected by
Mean Shift and all points converging to the same peak
are grouped into the same cluster. The bandwidth can be
estimated automatically using cross-validation in a prob-
abilistic setting. Orphan peaks where only a few points
converge are assumed to be outliers and hence are not
clustered. Again, we used the scikit-learn implementation
of the algorithm.

Labeling Clusters: Finally, we assume that the users in
each cluster would have the same stance with respect to the
target topic. As we will show later, we are able to find the
most salient retweeted accounts and hashtags for each user
cluster using a variant of the valence score (Conover et al.
2011a). This score can help when assigning labels to user
clusters, based on the most frequent characteristics of the
group.

3http://umap-learn.readthedocs.io/en/latest/
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Figure 2: Successful setup: Plot (A) illustrates how user vectors get embedded by UMAP in two dimensions, Plot (B) presents
the clusters Mean Shift produces for them, and Plot (C) shows the users’ true labels.

Figure 3: Unsuccessful setup: The user vectors after projec-
tion (using t-SNE in this case); the colors show the users’
true labels.

Datasets

We used two types of datasets: labeled and unlabeled. We
pre-labeled the former in advance, and then we used it to
try different experimental setups and hyper-parameters val-
ues. Additionally, we collected fresh unlabeled data on new
topics and we applied the best hyper-parameters on this new
data.

Labeled Datasets

We used three datasets in different languages:
1. Kavanaugh dataset (English): We collected tweets per-
taining to the nomination of Judge Kavanaugh to the US
Supreme Court in two different time intervals, namely
September 28-30, 2018, which were the three days fol-
lowing the congressional hearing concerning the sexual as-
sault allegation against Kavanaugh, and October 6-9, 2018,
which included the day the Senate voted to confirm Ka-
vanaugh and the following three days. We collected tweets
using the Twarc toolkit,4 where we used both the search
and the filtering interfaces to find tweets containing any
of the following keywords: Kavanaugh, Ford, Supreme, ju-
diciary, Blasey, Grassley, Hatch, Graham, Cornyn, Lee,

4https://github.com/edsu/twarc

Cruz, Sasse, Flake, Crapo, Tillis, Kennedy, Feinstein, Leahy,
Durbin, Whitehouse, Klobuchar, Coons, Blumenthal, Hi-
rono, Booker, and Harris. These keywords include the
judge’s name, his main accuser, and the names of the mem-
bers of the Senate’s Judiciary Committee. In the process,
we collected 23 million tweets, authored by 687,194 users.
Initially, we manually labeled the 50 users who posted the
highest number of tweets in our dataset. It turned out that
35 of them supported the Kavanaugh’s nomination (labeled
as pro) and 15 opposed it (labeled as anti). Next, we used
label propagation to automatically label users based on their
retweet behavior (Darwish et al. 2017; Kutlu, Darwish, and
Elsayed 2018; Magdy et al. 2016). The assumption here is
that users who retweet a tweet on the target topic are likely
to share the same stance as the one expressed in that tweet.
Given that many of the tweets in our collection were actu-
ally retweets or duplicates, we labeled users who retweeted
15 or more tweets that were authored or retweeted by the
pro group with no retweets from the other group as pro.
Similarly, we labeled users who retweeted 6 or more tweets
from the anti group and no retweets from the other side as
anti.

We chose to increase the minimum number for the pro
group as they were over-represented in the initial manually
labeled set. We performed only one label propagation iter-
ation, labeling 48,854 users: 20,098 as pro and 28,756 as
anti. Since we do not have gold labels to compare against,
we opted to spot-check the results. Thus, we randomly se-
lected 50 automatically labeled accounts (21 pro and 29
anti), and we manually labeled them. All automatic labels
matched the manual labels. As observed, label propagation
may require some tuning to work properly, and checks are
needed to ensure efficacy.

2. Trump dataset (English): We collected 4,152,381
tweets (from 1,129,459 users) about Trump and the 2018
midterm elections from Twitter over a period of three
days (Oct. 25-27, 2018) using the following keywords:
Trump, Republican, Republicans, Democrat, Democrats,
Democratic, midterm, elections, POTUS (President of the
US), SCOTUS (Supreme Court of the US), and candi-
date. We automatically labeled 13,731 users based on
the hashtags that they used in their account descrip-
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tions. Specifically, we labeled 7,421 users who used
the hashtag #MAGA (Make American Great Again) as
pro Trump and 6,310 users who used any of the
hashtags #resist, #resistance, #impeachTrump,
#theResistance, or #neverTrump as anti. We fur-
ther tried label propagation, but it increased the number of
labeled users by 12% only; thus, we dropped it. In order to
check the quality of the automatic labeling, we randomly
labeled 50 users, and we found out that for 49 of them, the
manual labels matched the automatic ones.

3. Erdoğan dataset (Turkish): We collected a total of
19,856,692 tweets (authored by 3,184,659 users) about
Erdoğan and the June 24, 2018 Turkish elections that cover
the period of June 16–23, 2018 (inclusive). Unlike the pre-
vious two datasets, which were both in English, this one
was in Turkish. We used many election-related terms in-
cluding political party names, names of popular politicians,
and election-related hashtags. We were interested in users’
stance toward Erdoğan, the incumbent presidential candi-
date, specifically. In order to label users with their stance,
we made one simplifying assumption, namely that the sup-
porter of a particular political party would be supporting
the candidate supported by that party. Thus, we labeled
users who use “AKParti” (Erdoğan’s party) in their Twit-
ter user name or screen name as pro. Similarly, we labeled
users who mentioned other parties with candidates (“CHP”,
“HDP”, or “IYI”) in their names as anti. Further, users
who used pro-Erdoğan hashtags, namely #devam (meaning
“continue”) or #RTE (“Recep Tayyip Erdoğan”), or the anti-
Erdoğan hashtag #tamam (“enough”) in their profile de-
scription as pro or anti, respectively. In doing so, we were
able to automatically tag 2,684 unique users: 1,836 as pro
and 848 as anti. We further performed label propagation
where we labeled users who retweeted ten or more tweets
that were authored or retweeted by either the pro or the anti
groups, and who had no tweets from the other side. This
resulted in 233,971 labeled users of which 112,003 were
pro and 121,968 were anti. We manually labeled 50 ran-
dom users, and we found out that our manual labels agreed
with the automatic ones for 49 of them.

Unlabeled Datasets

Next, we collected fresh tweets on several new topics, which
are to be used to test our framework with the best settings
we could find on the above labeled datasets. In particular, we
collected tweets on six polarizing topics in USA, as shown in
Table 1. The topics include a mixture of long-standing issues
such as immigration and gun control, transient issues such as
the controversial remarks by Representative Ilhan Omar on
the Israeli lobby, and non-political issues such as the bene-
fits/dangers of vaccines. We filtered the tweets, keeping only
those by users who had indicated the USA as their location,
which we determined using a gazetteer that includes variants
of USA, e.g., USA, US, United States, and America, as well
as state names along with their abbreviations, e.g., Maryland
and MD.

Topic Keywords Date
Range

No. of
Tweets

Gun con-
trol/rights

#gun, #guns, #weapon, #2a,
#gunviolence, #secondamend-
ment, #shooting, #massshoot-
ing, #gunrights, #GunReform-
Now, #GunControl, #NRA

Feb
25–Mar
3, 2019

1,782,384

Ilhan Omar
remarks on
Israel lobby

IlhanOmarIsATrojanHorse,
#IStandWithIlhan, #ilhan, #An-
tisemitism, #IlhanOmar, #Il-
hanMN, #RemoveIlhanOmar,
#ByeIlhan, #RashidaTlaib,
#AIPAC, #EverydayIslamopho-
bia, #Islamophobia, #ilhan

Mar 1–
9, 2019

2,556,871

Illegal
immigration

#border, #immigration, #immi-
grant, #borderwall, #migrant,
#migrants, #illegal, #aliens

Feb
25–Mar
4, 2019

2,341,316

Midterm midterm, election, elections Oct
25–27,
2018

520,614

Racism
& police
brutality

#blacklivesmatter, #bluelives-
matter, #KKK, #racism, #racist,
#policebrutality, #excessive-
force, #StandYourGround,
#ThinBlueLine

Feb
25–Mar
3, 2019

2,564,784

Vaccination
benefits &
dangers

#antivax, #vaxxing, #Big-
Pharma, #antivaxxers, #measle-
soutbreak, #Antivacine,
#VaccinesWork, #vaccine,
#vaccines, #Antivaccine,
#vaccinestudy, #antivaxx,
#provaxx, #VaccinesSaveLives,
#ProVaccine, #VaxxWoke,
#mykidmychoice

Mar 1–
9, 2019

301,209

Table 1: Controversial topics.

Experiments and Evaluation

Experimental Setup

We randomly sampled tweets from each of the datasets to
create datasets of sizes 50k, 100k, 250k, and 1M. For each
subset size (e.g., 50k), we created 5 sub-samples of the three
datasets to create 15 tweet subsets, on each of which we ran
a total of 72 experiments with varying setups:

• The dimensionality reduction technique: FD, t-SNE, or
UMAP. FD needs no hyper-parameter tuning. We used
the default hyper-parameters for t-SNE and UMAP (we
change these defaults below): for t-SNE, we used perplex-
ity ρ = 30.0 and early exaggeration ee = 12.0, while for
UMAP, we used n neighbors=15 and min distance=0.1.

• The peak detection/clustering algorithm: DBSCAN or
Mean Shift. We used the default hyper-parameters for
DBSCAN, namely ε=0.5 and m=5. For Mean Shift, the
bandwidth hyper-parameter was estimated automatically
as the threshold for outliers.

• The number of top users to cluster: 500, 1,000, or 5,000.
Clustering a smaller number of users requires less com-
putation. We only considered users with a minimum of 5
interactions, e.g., 5 retweeted tweets.

• The features used to compute the cosine similarity,
namely Retweets (R), Hashtags (H), full Tweets (T), or
all of them together (TRH).
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Set # of Users Feature(s) Dim Reduce Peak Detect Avg. Purity Avg. # of Clusters Avg. Cluster Size Avg. Recall

100k
500

R FD Mean Shift 90.1 2.0 100.9 40.4
R UMAP Mean Shift 86.6 2.5 125.4 50.2

TRH UMAP Mean Shift 85.5 2.0 145.9 58.4

1,000 R UMAP Mean Shift 90.5 2.9 196.1 39.2
TRH UMAP Mean Shift 88.3 2.3 305.8 61.2

250k

500
R FD Mean Shift 98.7 2.5 171.3 68.6
R UMAP Mean Shift 98.5 2.1 179.9 72.0

TRH UMAP Mean Shift 94.4 2.3 165.3 66.2

1,000
R FD Mean Shift 99.1 2.3 353.5 70.6
R UMAP Mean Shift 98.8 2.1 359.2 71.8

TRH UMAP Mean Shift 97.9 2.5 355.5 71.2

5,000
R FD Mean Shift 98.8 2.1 1,264.3 50.6
R UMAP Mean Shift 98.6 2.4 1,322.2 52.8

TRH UMAP Mean Shift 97.9 2.7 1,872.4 74.8

1M

500

R FD Mean Shift 99.0 2.6 180.4 72.2
R t-SNE Mean Shift 94.9 2.1 165.1 66.0
R UMAP Mean Shift 97.5 2.6 179.8 72.0
T UMAP Mean Shift 98.0 2.0 162.3 65.0

TRH t-SNE Mean Shift 91.7 2.3 171.3 68.6
TRH UMAP Mean Shift 98.9 2.3 186.5 74.6

1,000

R FD Mean Shift 99.4 2.1 366.7 73.4
R t-SNE Mean Shift 94.6 2.0 309.9 62.0
R UMAP DBSCAN 84.4 2.2 403.1 80.6
R UMAP Mean Shift 98.9 2.7 369.5 73.8
T t-SNE Mean Shift 92.7 2.0 307.7 61.6
T UMAP Mean Shift 98.6 2.0 349.8 70.0

TRH FD Mean Shift 95.7 2.1 326.3 65.2
TRH t-SNE Mean Shift 96.0 2.1 348.1 69.6
TRH UMAP DBSCAN 81.7 2.0 415.1 83.0
TRH UMAP Mean Shift 98.7 2.7 366.8 73.4

5,000

R FD Mean Shift 99.6 2.3 1,971.5 78.8
R UMAP Mean Shift 99.3 2.5 1,965.2 78.6
T t-SNE Mean Shift 97.8 2.0 1,795.0 71.8
T UMAP Mean Shift 99.2 2.1 1,869.3 74.8

TRH FD Mean Shift 99.1 2.0 1,838.8 73.6
TRH UMAP DBSCAN 93.2 2.2 2,180.6 87.2
TRH UMAP Mean Shift 99.4 2.3 1,980.7 79.2

Table 2: Results for combinations that meet the success criteria: at least 2 clusters, average label purity of at least 80% across
all clusters, and labels assigned to at least 30% of the available users. The table shows the average purity, the average number
of clusters, the average number of users who were automatically tagged, and the average proportion of users who were tagged
(Recall) across the 15 tweet subsets.

Evaluation Results

We considered a configuration as effective, i.e., successful,
if it yielded a few mostly highly pure clusters with a rela-
tively low number of outliers, namely with an average label
purity of at least 80% across all clusters and where labels are
assigned to at least 30% of the users that were available for
clustering. Since polarizing topics typically have two main
sides, the number of generated clusters would ideally be 2
(or perhaps 3) clusters.

Table 2 lists all results for experimental configurations
that meet our success criteria. Aside from the parameters of
the experiments, we further report on average cluster purity,
average number of clusters, average cluster size, and aver-
age recall, which is the number of users in the same cluster.
A few observations can be readily gleaned from the results,
namely:
• No setup involving 50k subsets met our criteria, but many

larger setups did. Purity increased between 8.3-11.9% on

identical setups when moving from 100k to 250k, while
the improvement in purity was mixed when using the 1M
tweet subsets compared to using 250k.

• All setups meeting our criteria when using the 100k and
250k subsets involved using retweets as a feature (R or
TRH), FD or UMAP for dimensionality reduction, and
Mean Shift for peak detection. Some other configurations
met our criteria only when using subsets of size 1M.

• Using retweets (R) to compute similarity yielded the high-
est purity when using 1M tweets, 5,000 users, FD, and
Mean Shift with purity of 99.6%. Note that this setup is
quite computationally expensive.

• Using hashtags (H) alone to compute similarity failed to
meet our criteria in all setups.
As mentioned earlier, reducing the size of the tweet sets

and the number of users we cluster would lead to greater
computational efficiency. Thus, based on the results in Ta-
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Dim-
Reduce
param

Peak-
Detect
param

Avg.
Pu-
rity

Avg.
# of

Clus-
ters

Avg.
Clus-

ter
Size

Avg.
Run

Time
(s)

FD+Mean Shift
- bin=False 99.0 2.2 356.8 226
- bin=True 99.2 2.1 356.0 191

UMAP+Mean Shift
neigh-

bors=15 bin=False 98.6 2.0 354.3 148

neigh-
bors=15 bin=True 98.4 2.0 348.9 78

neigh-
bors=5 bin=True 98.6 2.0 358.2 114

neigh-
bors=10 bin=True 98.6 2.0 353.2 129

neigh-
bors=20 bin=True 98.4 2.0 348.7 159

neigh-
bors=50 bin=True 98.4 2.0 353.7 159

Table 3: Sensitivity of FD+Mean Shift and UMAP+Mean
Shift to hyper-parameter variations and random initial-
ization. Experiments on 250k datasets, top 1,000 users,
and using R to compute similarity. For UMAP, we tuned
n neighbors (default=15), and for Mean Shift we ran with
and without bin seeding (default=True).

ble 2, we focused on the setup with 250k tweets, 1,000 users,
retweets (R) as feature, FD or UMAP for clustering, and
Mean Shift for peak detection. This setup yielded high pu-
rity (99.1% for FD and 98.8% UMAP) that is slightly lower
than our best results (99.6%: 1M tweets, R as feature, FD,
and Mean Shift) while being relatively more computation-
ally efficient than the overall best setup.

We achieved the best purity with two clusters on aver-
age when the dimensionality reduction method used the FD
algorithm and the clustering method was Mean Shift. How-
ever, as shown in Table 3, UMAP with Mean Shift yielded
similar purity and cluster counts, while being more than
twice as fast as FD with Mean Shift.

The Role of Dimensionality Reduction

We also tried to use Mean Shift to cluster users directly
without performing dimensionality reduction, but we found
that Mean Shift alone was never able to produce clusters
that meet our success criteria, despite automatic and man-
ual hyper-parameter tuning. Specifically, we experimented
on the subsets of size 250k. Mean Shift failed to produce
more than one cluster with the cluster subsuming more than
95% of the users.

Comparison to Supervised Classification

We compared our results to using supervised classification
of users. For each of the 250k sampled subsets for each of
the three labeled datasets, we retained users for which we
have stance labels and we randomly selected 100 users for
training and the remaining users for testing. We used the
retweeted accounts for each user as features. We used two

different classifiers, namely SVMlight, which is a support
vector machine (SVM) classifier, and fastText, which is a
deep learning classifier (Joulin et al. 2017).

Classifier Precision Recall F1

SVMlight 86.0% 95.3% 90.4%
fastText 64.2% 64.2% 64.2%

Table 4: Results for supervised classification.

The evaluation results are shown in Table 4. To measure
classification effectiveness, we used precision, recall, and F1
measure. We can see that SVMlight outperforms fastText by
a large margin. The average cluster purity and the average
recall in our results for our unsupervised method (see Ta-
ble 2) are analogous to the precision and the recall in the
supervised classification setup, respectively.

Comparing to our unsupervised method (250k tweet sub-
set, 1,000 users, R as feature, UMAP, and Mean Shift), we
can see that our method performs better than the SVM-based
classification in terms of precision (99.1% cluster purity
compared to 86.0%), but has lower recall (70.6% compared
to 95.3%). However, given that our unsupervised method is
intended to generate a core set of labeled users with very
high precision, which can be used to train a subsequent
classifier, e.g., a tweet-based classifier, without the need for
manual labeling, precision is arguably more important than
recall.

Experiments on New Unlabeled Data

Next, we experimented with new unlabeled data, as de-
scribed above. In particular, we used the tweets from the
six topics shown in Table 1. For all experiments, we used
UMAP and Mean Shift for dimensionality reduction and
clustering, respectively, and we clustered the top 1,000 users
using retweets in order to compute similarity. To estimate
the cluster purity, we randomly selected 25 users from the
largest two clusters for each topic. A human annotator with
expertise in US politics manually and independently tagged
the users with their stances on the target topics (e.g., pro-
gun control/pro-gun rights; pro-DNC/pro-GOP for midterm
elections).

Given the manual labels, we found that the average cluster
purity was 98.0% with an average recall of 86.5%. As can be
seen, the results are consistent with the previous experiments
on the labeled sampled subsets.

Analysis: Refining in Search of Robustness

Thus far, we used the default hyper-parameters for all di-
mensionality reduction and peak detection algorithms. In
the following, we conduct two additional sets of experi-
ments on the 250k dataset, using retweets (R) as features,
and the 1,000 most active users. In the first experiment, we
want to ascertain the robustness of our most successful tech-
niques to changes in hyper-parameters and to initialization.
In contrast, in the second experiment, we aim to determine
whether we can get other setups to work by tuning their
hyper-parameters.
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Dim-Reduce Peak-
Detect Avg. Purity

Avg. #
of

Clusters

Avg.
Clus-

ter
Size

Run
Time

(s)

t-SNE+Mean Shift (bin seeding=True)
ρ=30/ee=8 - 69.7 1.6 256.0 290
ρ=30/ee=12 - 69.5 1.6 260.6 286
ρ=30/ee=50 - 69.6 1.8 266.6 301
ρ=5/ee=8 - 98.0 2.0 358.0 190
ρ=5/ee=12 - 98.2 2.0 359.1 193
ρ=5/ee=50 - 98.4 2.0 360.0 192
ρ=5/dim=3 - 60.2 1.0 238.2 589

UMAP (n neighbors=15)+DBSCAN
- ε=0.50 70.4 1.3 410.5 74
- ε=0.10 95.9±1.7 2.3±0.1 408.9 73
- ε=0.05 98.9 16.8 341.1 78

t-SNE+DBSCAN
ρ=30/ee=8 ε=0.50 59.5 1 409.9 195
ρ=30/ee=12 ε=0.50 59.5 1 409.9 192
ρ=30/ee=50 ε=0.50 59.5 1 409.7 201
ρ=30/ee=8 ε=0.10 59.2 1 397.9 184
ρ=30/ee=12 ε=0.10 59.3 1 397.3 193
ρ=30/ee=50 ε=0.10 59.2 1 397.6 195
ρ=5/ee=8 ε=0.50 59.5 1 410.0 135
ρ=5/ee=12 ε=0.50 59.5 1 410.0 135
ρ=5/ee=50 ε=0.50 59.5 1 410.0 148
ρ=5/ee=8 ε=0.10 71.8±1.5 1.6±0.1 407.4 140
ρ=5/ee=12 ε=0.10 74.0±2.2 1.7±0.1 407.0 131
ρ=5/ee=50 ε=0.10 75.5±2.1 1.6±0.1 407.0 139

FD+DBSCAN
- ε=0.50 59.5 1 410.4 179
- ε=0.10 70 1.3 399.1 177
- ε=0.05 78.1 1.7 372.5 178

Table 5: Sensitivity of t-SNE and DBSCAN to changes in
hyper-parameter values and to random initialization. The
experiments ran on the 250k datasets, 1,000 most engaged
users, and using R to compute similarity. For t-SNE, we
experimented with perplexity ρ ∈ {5, 30∗}, early exag-
geration ee ∈ {8, 12∗, 50}, and number of dimensions of
output dim ∈ {2∗, 3}. For DBSCAN, we varied epsilon
ε ∈ {0.05, 0.50∗}. ∗ means default value. Only the num-
bers with stdev>0.0 over multiple runs show stdev values
after them. Entries meeting our success criteria are bolded.

Testing the Sensitivity of the Successful Setups

Our successful setups involved using FD or UMAP for di-
mensionality reduction and Mean Shift for peak detection.
Varying the number of dimensions for dimensionality re-
duction for both FD and UMAP did not change the results.
Thus, we fixed this number to 2 and we continued testing the
sensitivity of other hyper-parameters. FD does not have any
tunable hyper-parameters aside from the dimensions of the
lower dimensional space, which we set to 2, and the number
of iterations, which is by default set to 50. For UMAP, we
varied the number of neighbors (n neighbors), trying 5, 10,
15, 20, and 50, where 15 was the default. Mean Shift has two
hyper-parameters, namely the bandwidth and a threshold for
detecting orphan points, which are automatically estimated
by the scikit-learn implementation.
As for the rest, we have the option to use bin seeding or
not, and whether to cluster all points. Bin seeding involves
dividing the space into buckets that correspond in size to
the bandwidth to bin the points therein. We experimented

with using bin seeding or not, and we chose not to cluster all
points but to ignore orphans.

Lastly, since FD and UMAP are not deterministic and
might be affected by random initialization, we ran all
FD+Mean Shift and UMAP+Mean Shift setups five times
to assess the stability of the results. Ideally, we should get
very similar values for purity, the same number of clusters,
and very similar number of clustered users. Table 3 reports
the results when varying the hyper-parameters for UMAP
and Mean Shift. We can see that there was very little ef-
fect on purity, cluster count, and cluster sizes. Moreover,
running the experimental setups five times always yielded
identical results. Concerning timing information, using bin-
ning (bin seeding=True) led to significant speedup. Also, in-
creasing the number of neighbors generally increased the
running time with no significant change in purity. Lastly,
UMAP+Mean Shift was much faster than FD+Mean Shift.
Based on these experiments, we can see that FD, UMAP,
and Mean Shift were robust to changes in hyper-parameters;
using default parameters yielded nearly the best results.

Tuning the Unsuccessful Setups

Our unsuccessful setups involved the use of t-SNE for di-
mensionality reduction and/or DBSCAN for peak detec-
tion. We wanted to see whether their failure was due to im-
proper hyper-parameter tuning, and if so, how sensitive they
are to hyper-parameter tuning. t-SNE has two main hyper-
parameters, namely perplexity, which is related to the size
of the neighborhood, and early exaggeration, which dictates
how far apart the clusters would be placed. DBSCAN has
two main hyper-parameters, namely minimum neighborhood
size (m) and epsilon (ε), which is the minimum distance be-
tween the points in a neighborhood. Due to the relatively
large number of points that we are clustering, ε is the im-
portant hyper-parameter to tune, and we experimented with
ε equal to 0.50 (default), 0.10, and 0.05. Table 5 reports on
the results of hyper-parameter tuning. As can be seen, no
combination of t-SNE or FD with DBSCAN met our min-
imum criteria (purity ≥ 0.8, no. of clusters ≥ 2). t-SNE
worked with Mean Shift when perplexity (ρ) was lowered
from 30 (default) to 5. Also, t-SNE turned out to be insensi-
tive to its early exaggeration (ee) hyper-parameter. We also
experimented by raising the dimensionality of the output of
t-SNE, which significantly lowered the purity as well as in-
creased the running time. UMAP worked with DBSCAN
when ε was set to 0.1. Higher values of ε yielded low pu-
rity and too few clusters, while lower values of ε yielded
high purity but too many clusters. Thus, DBSCAN is sensi-
tive to hyper-parameter selection. Further, when we ran the
UMAP+DBSCAN setup multiple times, the results varied
considerably, which is also highly undesirable.

Based on these experiments, we can conclude that using
FD or UMAP for dimensionality reduction in combination
with Mean Shift yields the best results in terms of cluster
purity and recall with robustness to hyper-parameter setting.

Lastly, we found that the execution times of Mean Shift
and of DBSCAN were comparable, and UMAP ran signifi-
cantly faster than FD.
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Kavanaugh Dataset
Cluster 0 (Left-leaning) Cluster 1 (Right-leaning)

RT Description score RT Description score
@kylegriffin1 Producer. MSNBC’s @The-

LastWord.
55.0 @mitchellvii (pro-Trump) Host of

YourVoiceTM America
52.5

@krassenstein Outspoken critic of Don-
ald Trump - Editor at
http://HillReporter.com

34.0 @FoxNews (right leaning media) 48.0

@Lawrence thelastword.msnbc.com 29.0 @realDonaldTrump 45th President of the United
States

48.0

@KamalaHarris (Dem) U.S. Senator for Cal-
ifornia.

29.0 @Thomas1774Paine TruePundit.com 47.0

@MichaelAvenatti (anti-Trump) Attorney, Ad-
vocate, Fighter for Good.

26.0 @dbongino Host of Dan Bongino Pod-
cast. Own the Libs.

44.5

Hashtag Description score Hashtag Description score
StopKavanaugh - 5.0 ConfirmKavanaugh - 19.0
SNL Saturday Night Live (ran a

skit mocking Kavanaugh)
4.0 winning pro-Trump 12.0

P2 progressives on social media 3.0 Qanon alleged insider/conspiracy
theorist (pro-Trump)

11.0

DevilsTriangle sexual/drinking game 3.0 WalkAway walk away from liberal-
ism/Dem party

9.0

MSNBC left-leaning media 3.0 KavanaughConfirmation 8.0

Trump Dataset
Cluster 0 (Left-leaning) Cluster 1 (Right-leaning)

RT Description score RT Description score
@TeaPainUSA Faithful Foot Soldier of the

#Resistance
98.5 @realDonaldTrump 45th President of the United

States
95.4

@PalmerReport Palmer Report: Followed by
Obama. Blocked by Donald
Trump Jr

69.8 @DonaldJTrumpJr EVP of Development & Ac-
quisitions The @Trump Org

72.4

@kylegriffin1 Producer. MSNBC’s @The-
LastWord.

66.5 @mitchellvii (pro-Trump) Host of
YourVoiceTM America

47.9

@maddow rachel.msnbc.com 39.5 @ScottPresler spent 2 years to defeat
Hillary. I’m voting for
Trump

33.0

@tribelaw (anti-Trump Harvard fac-
ulty)

32.0 @JackPosobiec OANN Host. Christian.
Conservative.

32.5

Hashtag Description score Hashtag Description score
VoteBlue Vote Dem 12 Fakenews 18.5
VoteBlueToSaveAmerica Vote Dem 11 Democrats - 15.5
AMJoy program on MSNBC 5 LDtPoll Lou Dobbs (Fox news) poll 12.0
TakeItBack Democratic sloagan 4 msm main stream media 11.0
Hitler controvercy over the term

”nationalist”
3 FakeBombGate claiming bombing is fake 11.0

Erdoğan Dataset
Cluster 0 (anti-Erdoğan) Cluster 1 (pro-Erdoğan)

RT Description score RT Description score
@vekilince (Muhammem Inci – presi-

dential candidate)
149.6 @06melihgokcek (Ibrahim Melih Gokcek –

ex. Governer of Ankara)
64.9

@cumhuriyetgzt (Cumhuriyet newspaper) 104.0 @GizliArsivTR (anti-Feto/PKK account) 54.0
@gazetesozcu (Sozcu newspaper) 82.5 @UstAkilOyunlari (Pro-Erdoğan conspiracy

theorist)
49.7

@kacsaatoldunet (popular anti-Erdoğan ac-
count)

80.0 @medyaadami (Freelance journalist) 42.0

@tgmcelebi (Mehmet Ali Celebi – lead-
ing CHP member)

65.8 @Malazgirt Ruhu 37.0

Hashtag Description score Hashtag Description score
tamam enough (anti-Erdoğan) 49.0 VakitTürkiyeVakti AKP slogan “It is Turkey

time”
42.7

Muharremİncee Muharrem İnce – presiden-
tial candidate

43.5 iyikiErdoanVar Great that Erdoğan is around 20.0

demirtaş Selahattin Demirtaş – presi-
dential candidate

12.0 tatanka Inci’s book of poetry 19.0

KılıçdaroğluNeSöyledi “what did Kılıçdaroğlu
(CHP party leader) say”

11.0 HazırızTürkiye Turkey: We’re Ready (AKP
slogan)

17.7

mersin place for Inci rally 11.0 katilHDPKK Killer PKK (Kurdish group) 17.0

Table 6: Salient retweeted accounts (top 5) and hashtags (top 5) for the two largest clusters for 250k sampled subsets from
the Kavanaugh, Trump, and Erdoğan datasets to qualitatively show the efficacy of our method. When describing the Twitter
accounts, we tried to use the text in the account descriptions as much as possible, with our words put in parentheses.
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Therefore, we recommend the following setup for auto-
matic stance detection: UMAP + Mean Shift with the default
settings as set in scikit-learn.

Labeling the Clusters

We wanted to elucidate the cluster outputs by identifying
the most salient retweeted accounts and hashtags in each of
the clusters. Retweeted accounts and hashtags can help tag
the resulting clusters. To compute a salience score for each
element (retweeted account or hashtag), we initially com-
puted a modified version of the valence score (Conover et
al. 2011a) at accommodates for having more than two clus-
ters. The valence score ranges in value between −1 and 1,
and it is computed for an element e in cluster A as follows:

V (e) = 2

tfA
totalA

tfA
totalA

+ tf¬A

total¬A

− 1 (1)

where tf is the frequency of the element in either cluster A
or not in cluster A (¬A) and total is the sum of all tfs for
either A or ¬A. We only considered terms that yielded a va-
lence score V (e) ≥ 0.8. Next, we computed the score of
each element as its frequency in cluster A multiplied by its
valence score as score(e) = tf(e)A • V (e). Table 6 shows
the top 5 retweeted accounts and the top 5 hashtags for 250k
sampled sets for all three datasets. As the entries and their
descriptions in the table show, the salient retweeted accounts
and hashtags clearly illustrate the stance of the users in these
clusters, and hence can be readily used to assign labels to the
clusters. For example, the top retweeted accounts and hash-
tags for the two main clusters for the Kavanaugh and Trump
datasets clearly indicate right- and left-leaning clusters. A
similar picture is seen for the Erdoğan dataset clusters.

Conclusion and Future Work

We have presented an effective unsupervised method for
identifying clusters of Twitter users who have similar
stances with respect to controversial topics. Our method
uses dimensionality reduction followed by peak detec-
tion/clustering. It overcomes key shortcomings of pre-
exiting stance detection methods, which rely on supervised
or semi-supervised classification, with the need for manual
labeling of many users, which requires both topic expertise
and time, and are sensitive to skews in the distribution of the
classes in the dataset.

For dimensionality reduction, we experimented with three
different methods, namely Fruchterman-Reingold force-
directed algorithm, t-SNE, and UMAP. Dimensionality re-
duction has several desirable effects such as bringing to-
gether similar items while pushing dissimilar items further
apart in a lower dimensional space, visualizing data in two
dimensions, which enables an observer to ascertain how
separable users stances are, and enabling the effective use
of downstream clustering. For clustering, we experimented
with DBSCAN and Mean Shift, both of which are suited for
identifying clusters of arbitrary shapes and are able to iden-
tify cluster cores while ignoring outliers. We conducted a
large set of experiments using different features to compute
the similarity between users on datasets of different sizes

with varying topics and languages that were independently
labeled with a combination of manual and automatic tech-
niques.
Our most accurate setups use retweeted accounts as features,
either the Fruchterman-Reingold force-directed algorithm
or UMAP for dimensionality reduction, and Mean Shift
for clustering, with UMAP being significantly faster than
Fruchterman-Reingold. These setups were able to identify
groups of users corresponding to the predominant stances
on controversial topics with more than 98% purity based on
our benchmark data. We were able to achieve these results
by working with the most active 500 or 1,000 users in tweet
sets containing 250k tweets. We have also shown the robust-
ness of our best setups to variations in the algorithm hyper-
parameters and with respect to random initialization.

In future work, we want to use our stance detection tech-
nique to profile popularly retweeted Twitter users, cited
websites, and shared media by ascertaining their valence
scores across a variety of polarizing topics.
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