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Abstract

Current approaches to A/B testing in networks focus on limit-
ing interference, the concern that treatment effects can ”spill
over” from treatment nodes to control nodes and lead to bi-
ased causal effect estimation. Prominent methods for network
experiment design rely on two-stage randomization, in which
sparsely-connected clusters are identified and cluster random-
ization dictates the node assignment to treatment and con-
trol. Here, we show that cluster randomization does not en-
sure sufficient node randomization and it can lead to selection
bias in which treatment and control nodes represent different
populations of users. To address this problem, we propose a
principled framework for network experiment design which
jointly minimizes interference and selection bias. We intro-
duce the concepts of edge spillover probability and cluster
matching and demonstrate their importance for designing net-
work A/B testing. Our experiments on a number of real-world
datasets show that our proposed framework leads to signif-
icantly lower error in causal effect estimation than existing
solutions.

Introduction

The gold standard for inferring causality is the use of con-
trolled experiments, also known as A/B tests and random-
ized controlled trials, in which experimenters can assign
treatment (e.g. prompt users to vote) to a random sub-
set of a population of interest and compare their outcome
with the outcome of a control group, randomly selected
from the same population (e.g., a group of users who were
not prompted to vote). Through randomization, the exper-
imenter can control for confounding variables that are not
present in the data but can impact the treatment and out-
come assignment (e.g. distance from voting polls location)
and to assess whether the treatment can cause the target
variable (e.g. vote) to change. Controlled experiments are
widely used in the social and biological sciences (Imbens
and Rubin 2015), and have numerous applications in indus-
try (Varian 2016; Kohavi et al. 2013), from understanding
the impact of personalization algorithms to measuring in-
cremental revenue due to ads.

While it is straightforward to randomly assign treatment
and control to units that are i.i.d., it is much harder to do for
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units that interact with each other. One of the challenges in
network experiment design is dealing with interference (or
spillover), the problem of treatment ”spilling over” from a
treated node to a control node through a shared edge, e.g.,
information flowing from person to person in an online so-
cial network, and diseases spreading between people inter-
acting in the same physical space. The presence of inter-
ference breaks the Stable Unit Treatment Value Assumption
(SUTVA), the assumption that one unit’s outcomes are un-
affected by another unit’s treatment assignment, and chal-
lenges the validity of causal inference (Imbens and Rubin
2015). Since SUTVA is hard to guarantee in real-world sce-
narios, recent research on causal inference from graphs fo-
cuses on designing controlled experiments in a way that
minimizes interference.

Prominent methods for interference minimization in con-
trolled experiments rely on graph clustering (Eckles, Karrer,
and Ugander 2017; Pouget-Abadie et al. 2018; Saveski et al.
2017; Ugander et al. 2013). Graph clustering aims to find
densely connected clusters of nodes, such that few edges ex-
ist across clusters (Schaeffer 2007). The basic idea of apply-
ing it to causal inference is that little interference can occur
between nodes in different clusters. Treatment and control is
assigned at the cluster level, and the cluster assignment dic-
tates the node assignment within each cluster, an experiment
design known as two-stage randomization (Basse and Feller
2018).

In this work, we make the key observation that there is
an inherent tradeoff between interference and selection bias
in cluster-based randomization based on the chosen num-
ber of clusters (as demonstrated in Figure 1). Due to the
heterogeneity of real-world graphs, discovered clusters can
be very different from each other, and the nodes in these
clusters may not represent the same underlying population.
For example, a treatment cluster may represent ”predom-
inantly Democrats from Oklahoma” while a control clus-
ter may represent ”predominantly Republicans from New
York.” Therefore, cluster randomization can lead to selec-
tion bias in the data with causal effects that are confounded
by the difference in node features of each cluster, rather than
the presence or absence of a treatment. Ideally, treatment
and control groups should represent the same populations,
e.g., there should be clusters of ”predominantly Democrats
from Oklahoma” assigned to both treatment and control. A
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common method for dealing with selection bias in observa-
tional treatment and control data is matching, where nodes
are matched based on their similarity and then assigned
randomly to treatment and control (Stuart 2010). However,
there are no methods for incorporating node matching into
matching graph clusters, and our work is the first to propose
such a method.

Our second main contribution is in introducing the con-
cept of ”edge spillover probability” and account for it in the
design. Clustering a connected graph component is guaran-
teed to leave edges between clusters, therefore removing in-
terference completely is impossible. At the same time, some
node pairs are more likely to interact than others and assign-
ing such pairs to different treatment groups is more likely to
lead to undesired spillover (and biased causal effect estima-
tion) than separating pairs with low probability of interac-
tion.

The goal of our work is to develop a framework for net-
work experiment design in a way that minimizes both selec-
tion bias and interference. We propose CMatch, a two-stage
framework that achieves this goal through a novel objective
function for matching clusters and combining node match-
ing with weighted graph clustering. While the idea of using
graph clustering to address interference is not new (Ugander
et al. 2013; Saveski et al. 2017; Eckles, Karrer, and Ugan-
der 2017), incorporating node matching and edge spillover
probabilities into it is novel.

Related Work
Causal inference models are studied by multiple disciplines,
including statistics (Imbens and Rubin 2015), computer sci-
ence (Pearl 2009), and the social sciences (Varian 2016).
Here, we review relevant work on causal inference for
graphs.

Graph mining. Our framework relies on three prepro-
cessing steps which can leverage existing graph mining al-
gorithms for edge strength estimation, graph clustering, and
node representation learning. The goal of edge (or tie or rela-
tionship) strength estimation is to assign each existing edge
a numeric value which corresponds to a metric of interest for
a pair of nodes, such as how close of friends two people are
or how likely they are to communicate. Existing approaches
rely on topological proximity (Liben-Nowell and Kleinberg
2007), supervised models on node attributes (Gilbert and
Karahalios 2009), or latent variable models (Li et al. 2010).
Graph clustering aims to find subgraph clusters with high
intra-cluster and low inter-cluster edge density (Yang and
Leskovec 2015; Zhou, Cheng, and Yu 2009). A number of
algorithms exist for weighted graph clustering (Schaeffer
2007). Node representation learning approaches range from
graph motifs (Milo et al. 2002) to embedding representa-
tions (Hamilton, Ying, and Leskovec 2017) and statistical
relational learning (SRL) (Rossi et al. 2012).

Dealing with interference bias. Recent work that ad-
dresses interference in graphs relies on separating data sam-
ples through graph clustering (Backstrom and Kleinberg
2011; Eckles, Karrer, and Ugander 2017; Gui et al. 2015;
Pouget-Abadie et al. 2018; Saveski et al. 2017; Ugander et
al. 2013), relational d-separation (Lee and Honavar 2016;

Maier et al. 2010; 2013; Marazopoulou, Maier, and Jensen
2015; Rattigan, Maier, and Jensen 2011), or sequential ran-
domization design (Toulis and Kao 2013). Since our work
is closest to the approaches based on graph clustering, we
use these approaches as baselines in our experiments. None
of the existing approaches account for interference hetero-
geneity and the fact that different edges can have different
spillover probabilities; this is one of our main contributions.

Matching and selection bias. In controlled experiments,
the treatment assignment is randomized by the experimenter,
whereas in estimating causal effects from observational data,
the process by which the treatment is assigned is not de-
cided by the experimenter and is often unknown. Match-
ing is a prominent method for mimicking randomization
in observational data by pairing treated units with similar
untreated units. Then, the causal effect of interest is esti-
mated based on the matched pairs, rather than the full set
of units present in the data, thus reducing the selection bias
in observational data (Stuart 2010). There are two main ap-
proaches to matching, fully blocked and propensity score
matching (PSM) (Stuart 2010). Fully blocked matching se-
lects pairs of units whose distance in covariate space is un-
der a pre-determined distance threshold. PSM models the
treatment variable based on the observed covariates and
matches units which have the same likelihood of treatment.
The few research articles that look at the problem of match-
ing for relational domains (Oktay, Taylor, and Jensen 2010;
Arbour et al. 2014) consider SRL data representations. None
of them consider cluster matching for two-stage design
which is one of our contributions.

Network experiment design
The goal of designing network experiments is to ensure re-
liable causal effect estimation in controlled experiments for
graphs. As a running example, imagine that we are interested
to test whether showing a social media post about the ben-
efits of voting would lead to a higher voter turnout. In this
section, we present our data model, give a brief overview
of the potential outcomes framework for causal inference,
and present the challenges with causal effect estimation in
graphs. Then, we describe the causal effects of interest and
formally define the problem of network experiment design.

Data model

A graph G = (V,E) consists of a set of n nodes V and a set
of edges E = {eij} where eij denotes that there is an edge
between node vi ∈ V and node vj ∈ V . Let Ni denote the
set of neighbors for node vi, i.e. set of nodes that share an
edge with vi. Let vi.X denote the pre-treatment node fea-
ture variables (e.g., Twitter user features) for unit vi. Let
vi.Y denote the outcome variable of interest for each node
vi (e.g., voting), and vi.T ∈ {0, 1} denote whether node vi
(e.g., social media user) has been treated (e.g., shown a post
about the benefits of voting), vi.T = 1, or not, vi.T = 0.
V1 and V0 indicate the sets of units in treatment and con-
trol groups, respectively. For simplicity, we assume that both
vi.T and vi.Y are binary variables. The edge spillover prob-
ability eij .p refers to the probability of interference occur-
ring between two nodes.
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Figure 1: The tradeoff between selection bias (distance) and
undesired spillover (RMSE) in cluster-based randomization;
each data point is annotated with the number of clusters.

Potential outcomes framework

The fundamental problem of causal inference is that we can
observe the outcome of a target variable for an individual
vi in either the treatment or control group but not in both.
Let vi.y(1) and vi.y(0) denote the potential outcomes of
vi.y if unit vi were assigned to the treatment or control
group, respectively. The treatment effect (or causal effect)
is the difference g(i) = vi.y(1) − vi.y(0). Since we can
never observe the outcome of a unit under both treatment
and control simultaneously, the effect μ̂ of a treatment on an
outcome is typically calculated through averaging outcomes
over treatment and control groups via difference-in-means:
μ̂ = V1.Y − V0.Y (Stuart 2010). For the treatment effect to
be estimable, the following identifiability assumptions have
to hold:

• Stable unit treatment value assumption (SUTVA) refers
to the assumption that the outcomes vi.y(1) and vi.y(0)
are independent of the treatment assignment of other
units: {vi.y(1), vi.y(0)} ⊥⊥ vj .T, ∀vj �= vi ∈ V .

• Ignorability (Imbens and Rubin 2015) – also known
as conditional independence (Pearl 2009) and absence
of unmeasured confoundness – is the assumption that
all variables vi.X that can influence both the treat-
ment and outcome vi.Y are observed in the data and
there are no unmeasured confounding variables that can
cause changes in both the treatment and the outcome:
{vi.y(1), vi.y(0)} ⊥⊥ vi.T | vi.X .

• Overlap is the assumption that each unit assigned to the
treatment or control group could have been assigned to
the other group. This is also known as positivity assump-
tion: P (vi.T |vi.X) > 0 for all units and all possible T
and X .

Challenges with causal effect estimation in graphs

Challenge no. 1: It is hard to separate a graph into treat-
ment and control nodes without leaving edges across. The
presence of interference breaks the SUTVA assumption and
leads to biased causal effect estimation in relational data.
Two-stage experimental design addresses this problem by
finding groups of units that are unlikely to interact with each
other (stage 1) and then randomly assigning each group to

treatment and control (stage 2). Clustering has been pro-
posed as a way to discover such groups that are strongly
connected within but loosely connected across, thus finding
treatment and control subgraphs that have low probability of
spillover from one to the other. However, due to the density
of real-world graphs, graph clustering techniques can leave
as many as 65% to 79% of edges as inter-cluster edges (Ta-
ble 2 in (Saveski et al. 2017)). Leaving these edges across
treatment and control nodes would lead to a large amount of
spillover. Incorporating information about the edge proba-
bility of spillover into the clustering helps alleviate this prob-
lem and is one of the main contributions of our work.

Challenge no. 2: There is a tradeoff between interfer-
ence and selection bias in cluster-based network experi-
ments. While randomization of i.i.d. units in controlled ex-
periments can guarantee ignorability and overlap, two-stage
design does not. One of the key observations in our work is
that dependent on the number of clusters, there is a tradeoff
between interference and selection bias in terms of the treat-
ment and control group not representing the same underly-
ing distribution. Figure 1 illustrates this tradeoff for Cora,
one of the datasets in our experiments, using reLDG as the
clustering method. When a network is separated into very
few clusters, the Euclidean distance between nodes in treat-
ment and control clusters is larger than the Euclidean dis-
tance when a lot of clusters are produced over the same net-
work (e.g., 0.4 vs. 0.18 for 2 and 1000 clusters). This is in-
tuitive because as the clusters get smaller and smaller, their
randomization gets closer to mimicking full node random-
ization (shown as a star). At the same time, a larger number
of clusters translates to a higher likelihood of edges between
treatment and control nodes, which leads to higher unde-
sired spillover and causal effect estimation error (e.g., 0.015
vs. 0.059 for 2 and 1000 clusters).

Types of causal effects in networks

In real-world scenarios, we are interested in estimating the
Total Treatment Effect (TTE). Let Z ∈ {0, 1}N be the treat-
ment assignment vector of all nodes. TTE is defined as the
outcome difference between two alternative universes, one
in which all nodes are assigned to treatment (Z1 = {1}N )
and one in which all nodes are assigned to control (Z0 =
{0}N ) (Ugander et al. 2013; Saveski et al. 2017):

TTE =
1

N

∑
vi∈V

(vi.Y (Z1)− vi.Y (Z0)).

TTE is estimated as averages over the treatment and control
group, and it accounts for two types of effects, individual
effects (IE) and peer effects (PE):

ˆTTE = V1.Y − V0.Y = IE(V ) + PE(V1)− PE(V0).

Average individual effects (IE) reflect the difference in
outcome between treated and untreated subjects which can
be attributed to the treatment alone. They are estimated as:

IE(V ) = E
vi∈V

[vi.Y |vi.T = 1]− E
vi∈V

[vi.Y |vi.T = 0].

Average peer effects (PE) reflect the difference in outcome
that can be attributed to influence by other subjects in the
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experiment. Let Ni.π denote the vector of treatment assign-
ments to node vi’s neighbors Ni. Average PE is estimated
as having neighbors with a treatment vector:

PE(V ) = E
vi∈V

[vi.Y |vi.T = t,Ni.π]

− E
vi∈V

[vi.Y |vi.T = t,Ni = ∅].

Here, we distinguish between two types of peer effects,
allowable peer effects (APE) and unallowable peer effects
(UPE). Allowable peer effects are peer effects that occur
within the same treatment group, and they are a natural con-
sequence of network interactions. For example, if a social
media company wants to introduce a new feature (e.g., nudg-
ing users to vote), it would introduce that feature to all users
and the total effect of the feature would include both indi-
vidual and peer effects. Unallowable peer effects are peer
effects that occur across treatment groups and contribute to
undesired spillover and incorrect causal effect estimation.

For each node vi in treatment group t, we have two types
of neighbors: 1) neighbors N t

i in the same treatment class as
node vi with treatment assignment set N t

i .π; 2) set of neigh-
bors in a different treatment class N t

i (t �= t) with treatment
assignment denoted by N t

i .π. The APE is defined as:

APE(V ) = E
vi∈V

[vi.Y |vi.T = t,N t
i .π]

− E
vi∈V

[vi.Y |vi.T = t,N t
i = ∅],

and the UPE is defined as:

UPE(V ) = E
vi∈V

[vi.Y |vi.T = t,N t
i .π]

− E
vi∈V

[vi.Y |vi.T = t,N t
i = ∅].

Ideally, we would like to measure TTE = IE(V ) +
APE(V1)−APE(V0). Due to undesired spillover in a con-
trolled experiment, what we are able to measure instead
is the overall effect that comprises of both allowable and
unallowable peer effects TTE = IE(V ) + APE(V1) −
APE(V0) + UPE(V1) − UPE(V0). Therefore, when we
designing an experiment for minimum interference, we are
interested in setting it up in a way that makes UPE(V1) = 0
and UPE(V0) = 0.

There are two types of pairwise interference that can
occur, direct interference and contagion (Ogburn, Vander-
Weele, and others 2014). What we have described so far is
causal effect estimation for direct interference which refers
to a treated node vi (vi.X = 1) influencing the outcome of
another node vj . For example, a treated social media user
who sees the post decides to share it with another user who
ends up voting as a result. Contagion refers to the outcome
of node vi influencing another node vj to have the same out-
come. For example, a social media user who votes can con-
vince another user to vote. The above definitions of peer ef-
fect can also be defined for contagion by conditioning them
on neighbor outcomes, rather than neighbor treatments. We
leave this exercise to the reader.

Problem definition

The goal of network experiment design is to minimize both
unallowable peer effects and selection bias in node assign-
ment to treatment and control. More formally:

Problem 1 (Network experiment design) Given a graph
G = (V ,E), a set of attributes V.X associated with each
node and a set of spillover probabilities E.P associated
with the graph edges, we want to construct two sets of nodes,
the control nodes V0 ∈ V and the treatment nodes V1 ∈ V
such that:

a. V0 ∩ V1 = ∅
b. |V0|+|V1| is maximized
c. θ = UPE(V1)− UPE(V0) is minimized
d. V0.X and V1.X are identically distributed

This problem definition describes the desired qualities of
the experiment design at a high level. The first component
ensures that the treatment and control nodes do not over-
lap. The second component aims to keep as many nodes as
possible from V in the final design. The third component
minimizes unallowable spillover. The fourth component re-
quires that there is no selection bias between the treatment
and control groups. The second and third component are at
odds with one another and require a trade off because the
lower θ, the lower the number of selected nodes for the ex-
periment |V0|+|V1|. As we showed in Figure 1, there is also
a tradeoff between the third and fourth component. In the
next section, we propose a solution to this problem.

CMatch: a network experiment design

framework

Our network experiment design framework CMatch, illus-
trated in Figure 2, has two main goals: 1) spillover minimiza-
tion which it achieves through weighted graph clustering,
and 2) selection bias minimization which it achieves through
cluster matching. Clusters in each matched pair are assigned
to different treatments, thus achieving covariate balance be-
tween treatment and control. The first goal addresses part c
of Problem 1 and the second goal addresses part d. While
the first goal can be achieved with existing graph mining
algorithms, solving for the second one requires developing
novel approaches. To achieve the second goal, we propose
an objective function, which can be solved with maximum
weighted matching, and present the nuances of operational-
izing each step.

Step 1: Interference minimization through
weighted graph clustering

Existing cluster-based techniques for network experiment
design assume unweighted graphs (Backstrom and Klein-
berg 2011; Eckles, Karrer, and Ugander 2017; Gui et al.
2015; Saveski et al. 2017; Ugander et al. 2013) and do not
consider that different edges can have different likelihood
of spillover. Incorporating information about the edge prob-
ability of spillover into the clustering helps alleviate this
problem and is one of the main contributions of our work.
In order to minimize undesired spillover, we operationalize
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Figure 2: Illustration of CMatch framework for minimizing interference and selection bias in controlled experiments. Input: a
graph of nodes and the connection between them. CMatch: node and cluster matching; the dashed circles indicates the clusters.
Matched nodes are represented with a similar circle border. Output: assigning the matched cluster pairs to treatment and control
randomly; circles with the same color represent matched clusters.

minimizing θ as minimizing the edges, and more specifi-
cally the edge spillover probabilities, between treatment and
control nodes: θ̂ =

∑
∀vi∈V0,∀vj∈V1

eij .p. To achieve this,
CMatch creates graph clusters for two-stage design by em-
ploying two functions, edge spillover probability estimation
and weighted graph clustering.

Edge spillover probability estimation. We consider
edge strength, how strong the relationship between two
nodes is, as a proxy for edge spillover probability. This re-
flects the notion that the probability of a person influencing
a close friend to do something is higher than the probability
of influencing an acquaintance. We can use common graph
mining techniques to calculate edge strength, including ones
based on topological proximity (Liben-Nowell and Klein-
berg 2007), supervised classification (Gilbert and Karahalios
2009), or latent variable models (Li et al. 2010).

Weighted graph clustering. In order to incorporate edge
strength into clustering, we can use any existing weighted
graph clustering algorithm (Enright, van Dongen, and
Ouzounis 2002; Schaeffer 2007; Yang and Leskovec 2015).
In our experiments, we use a prominent non-parametric al-
gorithm, the Markov Clustering Algorithm (MCL) (Enright,
van Dongen, and Ouzounis 2002) which applies the idea
of random walk for clustering graphs and produces non-
overlapping clusters. We also compare this algorithm with
reLDG which was the basis of previous work (Saveski et al.
2017). One of the advantages of MCL is that it automati-
cally finds the optimal number of clusters, rather than requir-
ing it as input. The main idea behind MCL is that nodes in
the same cluster are connected with higher-weighted short-
est paths than nodes in different clusters.

Step 2: Selection bias minimization through cluster
matching

Randomizing treatment assignment over clusters in a two-
stage design does not guarantee that nodes within those
clusters would represent random samples of the popula-
tion. We propose to address this selection bias problem
by cluster matching and balancing covariates across treat-
ment and control clusters. While methods for matching
nodes exist (Stuart 2010; Oktay, Taylor, and Jensen 2010;
Arbour et al. 2014), this work is the first to propose methods
for matching clusters.

Objective function. The goal of cluster matching is to
find pairs of clusters with similar node covariate distribu-
tions and assign them to different treatment groups. We pro-
pose to capture this through a maximum weighted match-
ing objective over a cluster graph in which each discovered
cluster from step 1 is a node and edges between clusters rep-
resent their similarity. Suppose that graph G is partitioned
into C = {c1, c2, ..., cg} clusters. We define A ∈ {0, 1},
such that aij = 1 if two clusters ci and cj are matched, else
aij = 0. wi,j ∈ R represents the similarity between two
clusters ci and cj . Then the objective function of CMatch
is as follows:

argmax
A

g∑
i=1

g∑
j=i+1

(aij · wij)

subject to ∀ci ∈ C,

|ci|∑
j=1

aij ≤ 1, aij ∈ {0, 1}.
(1)

This objective function maps to a maximum weighted
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matching problem for which there is a linear-time ap-
proximation algorithm (Duan and Pettie 2014) and a
polynomial-time exact algorithm with O(N2.376) (Mucha
and Sankowski 2004; Harvey 2009).

Solution. In order to operationalize the solution to this ob-
jective, the main question that needs to be addressed is: what
does it mean for two clusters to be similar? We propose to
capture this cluster similarity through matched nodes. The
more nodes can be matched based on their covariates across
two clusters, the more similar two clusters are. Thus, the
operationalization comes down to the following three ques-
tions which we address next:

1. What constitutes a node match?

2. How are node matches taken into consideration in com-
puting the pairwise cluster weights (cluster similarity)?

3. Given a cluster weight, what constitutes a potential cluster
match, and thus an edge in the cluster graph?

Once these three questions are addressed, the cluster graph
can be built and an existing maximum weighted matching al-
gorithm can be applied on it to find the final cluster matches.

Node Matching. The goal of node matching is to reduce
the imbalance between treatment and control groups due to
their different feature distributions. Given a node represen-
tation, fully blocked matching would look for the most sim-
ilar nodes based on that representation (Stuart 2010). It is
important to note that propensity score matching does not
apply here because it models the probability of treatment
in observational data and treatment is unknown at the time
of designing a controlled experiment. In its simplest form,
a node can be represented as a vector of attributes, includ-
ing node-specific attributes, such as demographic character-
istics, and structural attributes, such as node degree. For any
two nodes, it is possible to apply an appropriate similarity
measure sim(vi, vj), in order to match two nodes, including
cosine similarity, Jaccard similarity or Euclidean distance.

We consider two different options to match a pair of nodes
in different clusters (and ignore matches within the same
cluster):

• Threshold-based node matching (TNM): Node vk in
cluster ci is matched with node vl from a different cluster
cj if the pairwise similarity of nodes sim(vk, vl) > α.
The threshold α can vary from 0, which liberally matches
all pairs of nodes, to the maximum possible similarity
which matches nodes only if they are exactly the same.
In our experiments, we set α based on the covariate dis-
tribution of each dataset and consider different quartiles
of pairwise similarity as thresholds. This allows for each
node to have multiple possible matches across clusters.

• Best node matching (BNM): Node vk in cluster ci is
matched with only one node vl which is most similar to
vk in the whole graph; vl should be in a different cluster.
This is a very conservative matching approach in which
each node is uniquely matched but allows the matching to
be asymmetric.

Cluster Weights. After the selection of a node matching
mechanism, we are ready to define the pairwise similarity

of clusters which is the basis of cluster matching. We con-
sider three simple approaches and three more expensive ap-
proaches which require maximum weighted matching be-
tween nodes:

• Euclidean distance (E): This approach is the simplest of
all because it does not consider node matches and it sim-
ply calculates the Euclidean distance between the node
attribute vector means of two clusters.

• Matched node count (C): The first approach counts the
number of matched nodes in each pair of clusters ci and cj
and consider the count as the clusters’ pairwise similarity:
wij =

∑|ci|
k=1

∑|cj |
l=1 r

ij
kl. A node in cluster ci can have

multiple matched nodes in cj .
• Matched node average similarity (S): Instead of the

count, this approach considers the average similarity be-
tween matched nodes across two clusters ci and cj :

wij =
∑|ci|

k=1

∑|cj |
l=1 rijkl·sim(vk,vl)

∑|ci|
k=1

∑|cj |
l=1 rijkl

.

These first two approaches allow a single node to be
matched with multiple nodes in another cluster and each
of those matches to count towards the cluster pair weight.
In order to distinguish this from a more desirable case in
which multiple nodes in one cluster are matched to multiple
nodes in another cluster, we propose approaches that allow
each node to be considered only once in the matches that
count towards the weight. For each pair of clusters, we build
a node graph in which an edge is formed between nodes
vi and vj in the two clusters and the weight of this edge
is sim(vi, vj). Maximum weighted matching will find the
best possible node matches in the two clusters. We consider
three different variants for calculating the cluster pair weight
based on the maximum weighted matching of nodes:

• Maximum matched node count (MC): This method cal-
culates the cluster weight the same way as C except that
the matches (whether rijkl is 0 or 1) are based on the max-
imum weighted matching result.

• Maximum matched node average similarity (MS): This
method calculates the cluster weight the same way as S
except that the node matches are based on the maximum
weighted matching result.

• Maximum matched node similarity sum (MSS): This
method calculates the cluster weight similarly to MS ex-
cept that it does not average the node similarity: wij =∑|ci|

k=1

∑|cj |
l=1 r

ij
kl · sim(vk, vl).

Cluster Graph. Once the cluster similarities of have been
determined, we need to decide what similarity constitutes a
potential cluster match. Such potential matches are added as
edges in the cluster graph which is considered for maximum
weighted matching. We consider three different options:

• Threshold-based cluster matching (TCM): Cluster ci
is considered as a potential match of cluster cj if their
weight wi,j > β. The threshold β can vary from 0, which
allows all pairs of clusters to be potential matches, to the
maximum possible similarity which allows matching be-
tween clusters only if they are exactly the same. In our
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experiments, we set β based on the distribution of pair-
wise similarities and their quartiles as thresholds.

• Greedy cluster matching (GCM): For each cluster ci, a
sorted list of the similarities between ci and all other clus-
ters is defined. Cluster ci is considered a potential match
only to the cluster with the highest similarity value in the
list.

The last step in CMatch runs maximum weighted match-
ing on the cluster graph. For every matched cluster pair, it
assigns one cluster to treatment and the other one to control
at random. This completes the network experiment design.

Experiments

In this section, we evaluate the advantages of CMatch
in minimizing interference and selection bias compared to
state-of-the-art methods.

Semi-synthetic data

We consider four real-world attributed network datasets. Ta-
ble 1 shows the basic dataset characteristics. The 50 Women
dataset (Michell and Amos 1997) incorporates the smoking,
alcohol, sport and drug habits of 50 students. Hamsterster
(Zheleva et al. 2008) describes the online social network of
hamsters and their attributes. Cora and Citeseer (Sen et al.
2008) are two citation networks with binary bag-of-words
attributes for each article.

We assume that the underlying probability of activating a
node (changing the outcome) due to treatment and allowable
peer effects in the treatment group is 0.4 and the underlying
probability of activating a control node due to treatment and
allowable peer effects is 0.2 which makes the true causal ef-
fect TTE = 0.2. Based on these probabilities, we randomly
assign each node as activated or not. For each inactivated
nodes, we simulate two types of interference considering
both fixed values (0.1 and 0.5) and values based on the edge
weights for e.p:

1. Direct interference: each treated neighbor of a control
node activates the node with unallowable spillover proba-
bility of e.p.

2. Contagion: inactive treated and untreated nodes get acti-
vated with the unallowable spillover probability of e.p if
they are connected to at least one activated node in a dif-
ferent treatment class.

Table 1: Number of nodes, edges and attributes in the
datasets

Dataset Nodes Edges Attributes

Citeseer 3,312 4,675 3709
Cora 2,708 5,278 1440
Hamsterster 2,059 10,943 6
50 Women 50 74 4

Main algorithms and baselines

All our baseline and main algorithm variants take an at-
tributed graph as an input and produce a set of clusters, each
assigned to treatment, control, or none. For graph cluster-
ing, we considered two main algorithms, Restreaming Lin-
ear Deterministic Greedy (reLDG) (Nishimura and Ugander
2013) and Markov Clustering Algorithm (MCL) (Enright,
van Dongen, and Ouzounis 2002). reLDG takes as input an
unweighted graph and desired number of clusters and pro-
duces a graph clustering. reLDG was reported to perform
very well in state-of-the-art methods for network experiment
design (Saveski et al. 2017). MCL is a non-parametric al-
gorithm which takes as input a weighted graph and produces
a graph clustering. The edge weights which correspond to
the probabilities of spillover are estimated based on node
pair similarity using one minus the normalized L2 norm:
1− L2(vi.x, vj .x).

The main algorithms and baselines are:
• Randomized: This algorithm assigns nodes to treat-

ment and control randomly, ignoring the network.
• CR (Saveski et al. 2017): The Completely Randomized

(CR) algorithm was used as a baseline in (Saveski et al.
2017). The algorithm clusters the unweighted graph us-
ing reLDG algorithm, assigns similar clusters to the same
strata and assigns nodes in strata to treatment and control
in a randomized fashion

• CBRreLDG (Saveski et al. 2017): Cluster-based Ran-
domized assignment (CBR) is the main algorithm pro-
posed by (Saveski et al. 2017). The algorithm clusters
the unweighted graph using reLDG, assigns similar clus-
ters to the same strata and randomly picks clusters within
the same strata as treatment or control.

• CBRMCL: A variant of CBR that we introduce for
the sake of fairness which uses MCL for weighted-graph
clustering.

• Match: This algorithm matches nodes using maximum
weighted matching algorithm and then randomly assigns
nodes in each matched pair to treatment and control at
random without considering clustering.

• CMatchreLDG: This method uses our CMatch
framework but works on an unweighted graph. It uses
reLDG for graph clustering.

• CMatchMCL: This is our proposed technique which
uses MCL for weighted graph clustering.
CMatch uses the maximum weight matching func-

tion from the NetworkX Python library.

Experimental setup

We run a number of experiments varying the underly-
ing spillover assumptions, clustering algorithms, number of
clusters, and node matching algorithms. Our experimental
setup measures the desired properties for network exper-
iment design, as described in Problem 1 and follows the
experimental setups in existing work (Arbour et al. 2014;
Eckles, Karrer, and Ugander 2017; Maier et al. 2013; Stuart
2010; Saveski et al. 2017).
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Figure 3: The tradeoff between selection bias (distance) and
undesirable spillover (RMSE) in CMatchMCL variants (la-
beled with methods applied in) and baselines in Cora dataset
for e.p = edge-weight; CBRreLDG is annotated with the
number of clusters

To measure the strength of interference bias in different
estimators, we report on two metrics:
1. Root Mean Squared Error (RMSE) of the total treatment

effect calculated as:

RMSE =

√√√√ 1

S

S∑
s=1

((τ̂s − τs)2)

where S is the number of runs and τs and τ̂s are the true
and estimated causal effect in run s, respectively. We set
S = 10 in all experiments. Error can be attributed to un-
desired spillover only.

2. The number of edges and sum of edge weights between
treatment and control nodes assigned by each algorithm.

To show the selection bias, we want to assess how different
treatment vs. control nodes are. We compute the Euclidean
distance between the attribute vector mean of treated and
that of untreated nodes. We show the average and standard
deviation over 10 runs.

We run all 115 possible combinations of CMatch op-
tions for node matching, cluster weights and cluster graph
for each dataset. We consider four different values for the
threshold α in TNM: 0 (TNM0), first (TNM1), second
(TNM2) and third (TNM3) quantile of pairwise nodes’ sim-
ilarity distribution where sim(vi, vj)= (1- the normalized
L2 norm). For TCM, we consider four different β values: 0
(TCM0), first (TCM1), second (TCM2) and third (TCM3)
quantile of the pairwise clusters’ similarity distribution for
each dataset. We use TNM2 + C + TCM2 in all the experi-
ments of CMatchreLDG.

Unless otherwise specified, the number of clusters is
the same for all CBR and CMatch versions based on the
optimal determination by MCL as optimal for each re-
spective dataset. The number of clusters determined by
MCL is 2, 497 for Citeseer, 1, 885 for Cora, 1, 056 for
Hamsterster and 20 in 50 Women dataset.

Results

Tradeoff between interference and selection bias in
CMatch variants and baselines: Given the large number

of CMatch option combinations (115), we first find which
ones of these combinations have a good tradeoff between
RMSE and Euclidean distance (between treatment and con-
trol) with e.p = edge-weight. Based on these experiments,
we notice that 1) methods with stricter cluster thresholds
(TCM2 and TCM3) tend to have lower error, 2) stricter
node match thresholds (TNM2 and TNM3) have lower er-
ror than others for S and MSS and 3) MS has high error
across thresholds. Due to space constraints, we are showing
detailed results for Cora only.

Fig. 3 shows the results for the CMatch variants with
the best tradeoffs and their better performance when com-
pared to the baselines for Cora. Full CMatch results
can be found in Table 2. The figure clearly shows that
the selection bias decreases at the expense of interfer-
ence bias. For example, while the Euclidean distance for
TNM0+MS+TCM0 is low (0.155) when compared to
TNM2+C+TCM2 (0.253), its RMSE is higher, 0.048 vs.
0.01. The comparison between CBRreLDG with different
possible number of clusters is consistent with the tradeoff
shown in Fig.1. CBRreLDG with the highest error (anno-
tated with 1885) and CMatchMCL have the same num-
ber of clusters. It is intuitive that the Match method has
the least selection bias, because all nodes have their best
matches. However, similar to the Randomized method, it
suffers from high interference bias (RMSE) because of the
high density of edges between treatment and control nodes.

Interference evaluation for contagion: We choose two
CMatch variants with low estimation errors: TNM2 +
MSS + TCM3 and TNM2 + C + TCM2, denoted by
CMatchMCLMSS

and CMatchMCLC
respectively, and

compare their causal effect estimation error with the base-
lines. The first method uses a simpler cluster weight as-
signment while the second one uses the expensive maxi-
mum weighted matching of nodes. Fig. 4 shows that both
variants of CMatchMCL get significantly lower error than
other methods, especially in Citeseer and Cora with 75.5%
and 81.8% estimated error reduction in comparison to
CBRreLDG for e.p = edge-weight. CMatchMCLMSS

has
higher error than CMatchMCLC

in most of the experiments
which is expected as shown in Figure 3. Randomized and
Match approaches have similar performance in all datasets
because of their similarity in node randomization approach.
We also notice that CBRreLDG has the highest estima-
tion error in Hamsterster data which confirms that clustering
has a significant effect on the unallowable spillover. Mean-
while, CMatchreLDG outperforms other baselines in some
datasets (Citeseer) and but not in others (Hamsterster and 50
Women). In Citeseer, the CR method gets the largest esti-
mation error.

Fig. 4 also shows that the higher the unallowable spillover
probability, the larger the estimation error but also the bet-
ter our method becomes relative to the baselines. For exam-
ple, by increasing the unallowable spillover probability from
0.1 to 0.5 in Citeseer, the estimation error increases from
0.005 to 0.02 for CMatchMCLC

and from 0.023 to 0.086
for CBRreLDG.

Interference evaluation for direct interference: Fig. 5
shows the difference between RMSE of different estima-
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Figure 4: RMSE of total effect in the presence of contagion considering different unallowable spillover probabilities in all
datasets; CMatchMCLC

achieves the lowest error in all datasets

Figure 5: RMSE of total effect in the presence of di-
rect interference (e.p = edge-weight). CMatchMCLC

and
CMatchMCLMSS obtain the lowest RMSE for all datasets.

tors over the presence of direct interference for e.p = edge-
weight. In four datasets, both variants of CMatchMCL get
the lowest estimation error in comparison to baseline meth-
ods. For example, CMatchMCLC

’s error is approximately
half of the error of CBRreLDG (0.06 vs. 0.13 for Citeseer,
0.1 vs. 0.22 for Cora, 0.31 vs. 0.54 for Hamsterster, 0.15
vs. 0.36 for 50 Women). Similar to contagion, Match and
Randomized methods have similar estimation errors.

Potential spillover evaluation: Table 3 shows the po-
tential spillover between treatment and control nodes as-
signed by different methods. This applies to both con-
tagion and direct interference. CMatch has the lowest
sum of edges and edge weights between treatment and
control nodes across all datasets. The difference between
CMatchMCLC

and the baselines in Cora and Citeseer is
substantial: CMatchMCLC

has between 13.5% and 34.8%
lower number of edges between treatment and control across
datasets.

Selection bias evaluation for contagion. In this ex-
periment, we look at the relationship between number of
clusters and the difference between treatment and control
nodes with and without cluster matching. Fig. 6 shows the

Figure 6: Euclidean distance between the attribute vector
means of treatment and control nodes for different number
of clusters. The higher the number of clusters, the lower the
selection bias.

Euclidean distance between the average of treatment and
control nodes’ attributes in CMatchreLDG, CBRreLDG

and reLDG for three different number of clusters and un-
allowable spillover probability e.p = edge-weight. Since
CMatchreLDG optimizes for selection bias directly, it is not
surprising that it results in treatment and control nodes that
have more similar feature distributions than the other two
methods. In Citeseer the differences are more subtle than in
the other datasets. Error bars show the variance of averages
over 10 runs which confirms the low variance of estimations
in all datasets except in 50 Women, which is a small dataset.

Sensitivity to spillover probability metrics. Our last
experiment compares metrics for calculating the spillover
probability, Cosine similarity, Jaccard similarity and the
L2-based similarity used in all other experiments. We
report on RMSE of total effect using CMatchMCLC

and CMatchMCLMSS
methods under contagion. Figure

7 shows that CMatchMCLC
with L2-based similarity

obtains the least error in all datasets except for Cite-
seer where Cosine similarity has slightly lower error. For
CMatchMCLMSS

, Cosine similarity has the lowest RMSE
in Citeseer and 50 Women dataset, while Euclidean similar-
ity has the lowest error in the other datasets. Jaccard similar-
ity has the highest estimation error in all almost all cases.
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Table 2: The tradeoff between selection bias (distance) and undesirable spillover (RMSE) in CMatch variants in Cora dataset.
CMatchMCL variants used in Fig. 3 are in bold.

TCM0 TCM1 TCM2 TCM3 GCM
RMSE ED RMSE ED RMSE ED RMSE ED RMSE ED

C

TNM0 0.052 0.184 0.007 0.267 0.017 0.263 0.014 0.26 0.048 0.789
TNM1 0.055 0.176 0.051 0.177 0.008 0.258 0.012 0.26 0.031 0.6
TNM2 0.054 0.171 0.042 0.171 0.01 0.253 0.017 0.251 0.036 0.591
TNM3 0.043 0.175 0.043 0.175 0.173 0.046 0.018 0.231 0.034 0.592
BNM 0.012 0.262 0.037 0.481 0.049 0.485 0.059 0.479 0.025 0.274

S

TNM0 0.056 0.16 0.058 0.159 0.048 0.16 0.056 0.162 0.035 0.34
TNM1 0.055 0.16 0.053 0.162 0.057 0.165 0.054 0.166 0.026 0.31
TNM2 0.056 0.162 0.054 0.168 0.048 0.165 0.033 0.183 0.039 0.292
TNM3 0.057 0.169 0.041 0.174 0.024 0.198 0.015 0.211 0.021 0.275
BNM 0.014 0.253 0.017 0.264 0.02 0.27 0.027 0.303 0.014 0.277

MC

TNM0 0.049 0.177 0.015 0.261 0.01 0.262 0.008 0.263 0.042 0.189
TNM1 0.055 0.173 0.052 0.174 0.01 0.257 0.012 0.253 0.040 0.191
TNM2 0.047 0.171 0.051 0.177 0.013 0.261 0.007 0.263 0.024 0.211
TNM3 0.047 0.173 0.049 0.178 0.051 0.176 0.011 0.249 0.012 0.244
BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS

TNM0 0.048 0.155 0.051 0.156 0.052 0.156 0.058 0.157 0.018 0.271
TNM1 0.051 0.156 0.057 0.157 0.048 0.156 0.052 0.16 0.022 0.264
TNM2 0.059 0.156 0.057 0.157 0.054 0.158 0.056 0.157 0.021 0.258
TNM3 0.053 0.157 0.05 0.159 0.056 0.155 0.051 0.156 0.028 0.27
BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MSS

TNM0 0.059 0.162 0.048 0.162 0.061 0.159 0.036 0.184 0.026 0.271
TNM1 0.056 0.16 0.054 0.161 0.047 0.161 0.03 0.194 0.029 0.275
TNM2 0.052 0.161 0.057 0.161 0.045 0.172 0.028 0.195 0.021 0.281
TNM3 0.049 0.168 0.035 0.186 0.023 0.199 0.022 0.212 0.033 0.278
BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

E N/A 0.051 0.178 0.05 0.18 0.031 0.203 0.012 0.242 0.042 0.718

Table 3: Percentage of edges (and edge weights) between treatment and control nodes. The lower the number, the lower proba-
bility of undesired spillover.

Dataset Randomized CR CBRreLDG CBRMCL Match CMatchreLDG CMatchMCLC

Citeseer 49.9%(50%) 35.9% (36.3%) 39.8% (38.4%) 38.9%(38.4%) 53.9% (56.6%) 35.8% (34.4%) 7.5%(7.2%)
Cora 49.7%(49.7%) 37.6%(37.6%) 43.4%(42.8%) 38.9% (33.6%) 51.8%(53.3%) 38.7% (38.2%) 8.6%(9.1%)
Hamsterster 50.2%(50.1%) 31.7%(30.4%) 48.3%(48.3%) 35.1% (34.7%) 50% (50.1%) 43.3% (44.4%) 34.8%(34.4%)
50 Women 48.5%(48.1%) 31.8%(30.5%) 36.6%(34.3%) 18.3%(11.4%) 52.5%(52.7%) 16%(18.6%) 12.8%(9.7%)

Figure 7: RMSE of total effect in the presence of contagion
using three different similarity methods to calculate spillover
probability: Cosine (co), Jaccard (ja) and L2 similarity.

Conclusion

We presented CMatch, the first optimization framework
that minimizes both interference and selection bias in
cluster-based network experiment design. We demonstrated
the tradeoff between causal effect estimation error and dis-
tance between treatment and control groups, as well as the
value of combining weighted graph clustering with clus-
ter matching. Our experiments on four real-world network
datasets showed that CMatch reduces the causal effect es-
timation error by 8.6% to 91.4% when compared to state-of-
the-art techniques. Some possible extensions of our frame-
work include understanding the impact of network structural
properties on estimation, jointly optimizing for interference
and selection bias, and developing frameworks that are able
to mitigate for multiple-hop diffusions.
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