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Abstract

Graph representation learning (GRL) is a powerful technique
for learning low-dimensional vector representation of high-
dimensional and often sparse graphs. Most studies explore the
structure and metadata associated with the graph using ran-
dom walks and employ an unsupervised or semi-supervised
learning schemes. Learning in these methods is context-free,
resulting in only a single representation per node. Recently
studies have argued on the adequacy of a single representation
and proposed context-sensitive approaches, which are capa-
ble of extracting multiple node representations for different
contexts. This proved to be highly effective in applications
such as link prediction and ranking.
However, most of these methods rely on additional textual
features that require complex and expensive RNNs or CNNs
to capture high-level features or rely on a community detec-
tion algorithm to identify multiple contexts of a node.
In this study we show that in-order to extract high-quality
context-sensitive node representations it is not needed to rely
on supplementary node features, nor to employ computa-
tionally heavy and complex models. We propose GOAT, a
context-sensitive algorithm inspired by gossip communica-
tion and a mutual attention mechanism simply over the struc-
ture of the graph. We show the efficacy of GOAT using 6 real-
world datasets on link prediction and node clustering tasks
and compare it against 12 popular and state-of-the-art (SOTA)
baselines. GOAT consistently outperforms them and achieves
up to 12% and 19% gain over the best performing methods
on link prediction and clustering tasks, respectively.

Introduction

GRL is a powerful tool for learning the representation of a
graph. Such a representation gracefully lends itself to a wide
variety of network analysis tasks, such as link prediction,
node clustering, node classification, recommendation, etc.

Naturally, users in real world networks belong to multiple
contexts at a time. For instance, on interaction networks such
as YouTube users usually interact (watch, like, comment and
so on) with videos from different categories or topics de-
pending on their interest. On social networks, like Facebook
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users tend to befriend others from multiple aspects as a re-
sult of communication over different contexts (e.g. country,
school, religion, work and so on). This property is prevalent
in many other areas, such as e-commerce, drug-target inter-
action networks and so on.

However, in most GRL studies, the learning is oblivious to
such contexts (context-free) (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016; Wang, Cui, and Zhu 2016;
Perozzi, Kulkarni, and Skiena 2016; Yang et al. 2015; Pan et
al. 2016; Sheikh, Kefato, and Montresor 2019). This is to
say that all the context information is squeezed into a single
(global) latent representation. In many cases, particularly for
sparse graphs this leads to the loss of important details, and
hence decreased performance in network analysis tasks.

Recently, a complementary line of research has ques-
tioned the adequacy of single representations per node and
pursued a context-sensitive approach (Epasto and Perozzi
2019; Tu et al. 2017; Zhang et al. 2018; Kefato and Girdz-
ijauskas 2020). This approach learns multiple representa-
tions per node to capture the different contexts that a node
is part of. That is, given an anchor node, its representation
changes depending on another target (context) node it is cou-
pled with. A context node can be sampled from a neigh-
borhood (Tu et al. 2017; Zhang et al. 2018), community
affiliations (Epasto and Perozzi 2019), random walk (Ying
et al. 2018), and so on. In this study we sample from a
node neighborhood (nodes connected by an edge). That is,
different neighbors of a given node potentially provide its
multiple contexts. Thus, in the learning process of our ap-
proach representation of a source node changes depending
on the target (context) node it is accompanied by. Stud-
ies have shown that context-sensitive approaches signifi-
cantly outperform previous context-free SOTA methods in
link-prediction task. A related notion (Peters et al. 2018;
Devlin et al. 2018) in NLP has significantly improved SOTA
across several NLP tasks.

In this study we propose GOAT1 (Gossip and Attend),
a context-sensitive graph representation learning algorithm
that is inspired by gossip communication protocol and multi-
way attention mechanism (dos Santos et al. 2016). In order
to facilitate understanding of nodes’ context, GOAT allows

1Source code: https://github.com/zekarias-tilahun/goat
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Figure 1: Left, a graph with a set of nodes having soft af-
filiation to groups indicated by colors and the cubes on the
edges are parallel execution blocks of a shared GOAT model.
Right, an illustration of a GOAT block for gossip partners 5
and 6

.

each node to gossip with each neighbor in its surrounding
(context) in parallel, like the gossip communication proto-
col. To this end, a node uses its neighborhood as a message
to be sent to the gossiping partners. Then, through a mutual
(multi-way) attention mechanism, nodes will be allowed to
learn the context that they are part of by cross examining
their neighborhood against the message they received.

For example, in Fig. 1 when node 5 gossips with node 6,
they both examine the message from the other node, i.e. the
neighborhood set, which are {3, 4, 6, 8, 9, 7} and {3, 4, 5}
respectively. In the message exchange, we want these nodes
to understand that they have a shared neighborhood due to
nodes 3 and 4 using the mutual-attention mechanism. That
is, we seek that both nodes, 5 and 6, pay more attention to
3 and 4 and little attention to and/or ignore the other ones.
On the other hand, when node 5 gossips with another node,
e.g. node 7, we want the attention to shift to nodes 8 and 9.
Therefore, each time a node gossips with another context
node, it pays attention to different part of its neighborhood
depending on its gossip partner. The intuition behind under-
standing neighborhood is reflected by changing the latent
representation of a node depending on with whom it is gos-
siping with. This in turn enables us to learn multiple repre-
sentations per node that capture multiple facets of the node
instead of just one.

Note, while GOAT is inspired by gossip communication, it
is not a decentralized algorithm as we monitor a central state
(global embedding of nodes) and requires synchronisation.

GOAT

GOAT works over a graph G = (V,E) with a set of n nodes
V and m edges E. G can be directed or undirected and
weighted or unweighted. Without loss of generality we as-
sume that G is a weighted directed graph. For any node
v ∈ V , D(v) = |{u : (u, v) ∈ E ∨ (v, u) ∈ E}| denotes its

degree and for every directed edge (s, t), wst denotes the
weight associated to the edge.

The need for the gossip-like communication between
pairs of nodes stems from our objective of learning context-
sensitive (multiple) representations of nodes. That is, by al-
lowing nodes to independently communicate (gossip) with
their neighbors we enable them to identify/understand the
multiple contexts that they are part of. For example in Fig. 1,
after a set of parallel gossips between 5 and other nodes in
two of its contexts we want node 5 to know that it is part of
two contexts as indicated by the colors of the nodes.

However, in GOAT, similar to existing studies (Tu et al.
2017; Zhang et al. 2018), the number of representations per
node is the same as the number of gossip partners that it
has, for example 6 representations for node 5. This is be-
cause each gossip partner provides an understanding of a
specific context that needs to be reflected by the representa-
tions. For this reason, one has to ensure that representations
of a node within a specific context are very similar to each
other. Thus, we use a mutual-attention mechanism to ensure
that such representations are close to each other. After train-
ing, one can employ nearly constant-time algorithms like lo-
cality sensitive hashing (LSH) to collapse multiple repre-
sentations of a node within the same context into a single
one (Kumar, Zhang, and Leskovec 2019).

Gossiping in GOAT: In the gossip-like communica-
tion that we seek to establish between a pair of nodes
(u, v) ∈ E, the exchanged message is a neighborhood func-
tion fn : V × Z → 2V , which maps each node u ∈ V to a
set of N nodes Nu ⊆ V sampled from the neighborhood of
u. A simple way of materializing Nu is by sampling (with-
out replacement) from the first-order neighbors of u, that is,

Nu = fn(u,N) = [v : (u, v) ∈ E ∨ (v, u) ∈ E] (1)

where N = |Nu| and for the ith neighbor v,
Nu[i] = v, �j �= i, where Nu[j] = v. A natural assumption
that we have on Nu is that the order of nodes in Nu has
no intrinsic meaning. In addition, though one can explore
more sophisticated neighborhood sampling functions, in this
study we simply consider the first order neighborhood.

Instead of the identity of its neighbors, ui ∈ Nu, node u
uses a global embedding Eui

of ui to communicate with its
gossip partners. The matrix E defines the global (context-
free) embedding of nodes and Ev denotes the global em-
bedding of any node v ∈ V .

Therefore given a source s and a target t node, where
(s, t) ∈ E, the actual messages that node s and t use to
gossip are encoded using S and T , respectively.

S = [Eu : u ∈ Ns], T = [Ev : v ∈ Nt],

where S ∈ Rd×N , T ∈ Rd×N , and d is the embedding
dimension.

Mutual Attention As we have alluded in an earlier discus-
sion we use the attention mechanism so that a pair of nodes
can mutually instill understanding of the shared context.
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Figure 2: The alignment matrix A and the column-wise max
pooling, highlighted by the green box asi = max(Ai:), and
row-wise max-pooling operations, highlighted by the blue
box asj = max(A:j) to compute the unnormalized atten-
tion weight vectors as and at of nodes s and t respectively.

The mutual attention works over the messages from the
gossiping nodes (s, t) ∈ E. Recall the messages are speci-
fied by the two d–by–N matrices S and T , where each col-
umn is a global embedding of the neighbors in Ns and Nt

of s and t, respectively. In a nutshell, our strategy is to use
an aggregated global embedding of the “important” neigh-
bours to infer a context-sensitive embedding. Importance is
quantified based on attention weights of neighbor nodes. A
neighbor’s weight will be learned depending on how much
information it has contained regarding the shared context of
the gossipers.

Formally, we achieve this by first computing a pair-wise
soft alignment score between nodes in the set Ns ×Nt as

A = ST · T (2)

Matrix A ∈ RN×N is a square matrix, where the vector
in the ith row Ai: ∈ RN is associated with the ith neighbor
ui ∈ Ns of s. Each of the components Aij of Ai: encode
how much node ui’s global embedding ST

ui
= Eui

is sim-
ilar/aligned to the global embeddings of each of the neigh-
bors [Evj : vj ∈ Nt] of t. Similarly, the vector in the jth col-
umn A:j ∈ RN is associated with the jth neighbor vj ∈ Nt

of t. The components of the vector are soft alignment scores
between the global embedding Tvj = Evj of vj and the
global embedding of all the neighbors [Eui : ui ∈ Ns] of s.

Therefore, if we inspect the maximum value
asi = max(Ai:) of a particular row Ai: associated
with a neighbor ui ∈ Ns (the green box in Fig. 2), that will
be the maximum alignment score between ui and neighbors
vj ∈ Nt of t. Thus, by examining the maximum value from
all the neighbors of s as max([asi = max(Ai:) : ui ∈ Ns])
one can tell which neighbor of s is maximally aligned, i.e.,
provide information on the shared context between s and
t. So, to identify important neighbors Ns of s that align
with the neighbors Nt of its gossip partner t, we perform
a column-wise max-pooling operation on A and obtain an
attention weight vector as ∈ RN as in Eq. 3. A similar
inspection can be done on t as shown by the blue box in
Fig. 2, and ultimately attention weight vector at of t can be
computed by doing a row-wise max-pooling using Eq. 4.

as = [max(Ai:) : ui ∈ Ns] (3)
at = [max(A:j) : vj ∈ Nt] (4)

We expect the attention weights of the important nodes,
which are in the shared context of s and t, to have higher
weights and the rest to have very small weights. Thus, if we
take the weighted sum of the neighbors global-embedding,
the global embedding from the important neighbors will
have a stronger impact than the less important ones. This
is exactly what we do to compute a context-sensitive repre-
sentations of the gossipers. More formally, we compute the
context-sensitive representations rs ∈ Rd×1 and rt ∈ Rd×1

of s and t, respectively, as the weighted sum of their neigh-
bors global embedding using Equations 5 and 6.

rs = S · softmax(as)
T (5)

rt = T · softmax(at)
T (6)

Softmax is used to normalize the attention weights. Once
we devise a learning objective, the attention weights in as

and at should enable us to effectively distinguish important
neighbors.

Optimization Objective: In order to train the aforemen-
tioned model, we employ the most commonly used learn-
ing objective in unsupervised GRL. That is, to maximize
the likelihood of the graph or the observed edges, E. Con-
cretely, we optimize the weighted negative log-likelihood of
the edges specified in Eq. 7.

L(E) = min− 1

|E|
∑

(s,t)∈E

wst logP (t|s) (7)

Equation 7 seeks to minimize the negative log-likelihood of
observing node t as the gossip partner given node s, and
P (t|s) is estimated using the softmax formulation as follows

P (t|s) = exp(rs · rt)∑
w∈V exp(rs · rw) (8)

However, due to the normalization constant that should be
computed each time a node changes a gossip partner, Eq. 8
is expensive to compute and we resort to negative sam-
pling (Mikolov et al. 2013). Negative nodes are sampled
from the distribution PV , and a couple of alternatives, such
as, the uniform and unigram distributions have been tested
and (Mikolov et al. 2013) reported that the unigram distri-
bution raised to the power of 0.75 significantly outperforms
the others, and hence we sample negative nodes according
to the empirical distribution PV (u) =

D(u)0.75

n .

Computational Complexity: The learning in GOAT is
mainly affected by the number of edges, O(m). The first
task is to compute the embedding of each neighbor of the
gossiping nodes s and t. Since just a lookup is required to
compute the embedding Eu of any neighbor u, the cost re-
quired to embed all neighbors of the gossipers using S and
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Dataset #Nodes #Edges Features

Cora 2277 5214 Paper Abstract
Cora2 2708 5278 Paper Abstract
Citeseer 3327 4676 Paper Abstract
Pubmed 19717 44327 Paper Abstract
Zhihu 10000 43894 User post
Email 1005 25571 NA

Table 1: Summary of datasets, the Features column is rele-
vant to some of the baselines not GOAT.

Dataset ρ N λ d
Cora (2)

0.5 100 0.0001 200
Citeseer
Pubmed
Email 0.8
Zhihu 0.65 250

Table 2: Configuration of GOAT, ρ (dropout rate), N (neigh-
borhood size), λ (learning rate), and d (dimension of the la-
tent representation).

T is O(2N), assuming that lookup is a constant time opera-
tion. Second, the attention step involves a matrix multiplica-
tion given in Eq. 2, which has a cost of O(2N2d). Therefore,
the asymptotic computational cost of GOAT is proportional
to O(m(N2d + 2N)). However, N and d are usually very
small (less than 300) and in addition one can capitalize on
highly specialized linear algebra and machine learning li-
braries 2. Hence, GOAT can easily scale to large graphs, as it
is mainly affected by the number of edges. Furthermore, its
design makes it easy to parallelize or decentralize the imple-
mentation.

Empirical Results

In this section we provide an empirical evaluation of GOAT.
To this end, we carried out experiments using the following
six datasets, and a basic summary is given in Table 1.
1. Three of the datasets (Cora, Citeseer, and Pubmed) (Tu

et al. 2017; Zhang et al. 2018; Kipf and Welling 2016):
are citation network datasets, where a node represents a
paper and an edge (u, v) ∈ E represents that paper u has
cited paper v. For Cora we use two versions, and we refer
to them as Cora and Cora2.

2. Zhihu (Tu et al. 2017; Zhang et al. 2018): is the biggest
social network for Q&A and it is based in China. Nodes
are the users and the edges are follower relations between
the users.

3. Email (Leskovec, Kleinberg, and Faloutsos 2007): is an
email communication network between the largest Euro-
pean research institutes. A node represents a person and
an edge (u, v) ∈ G denotes that person u has sent an
email to v.
Datasets under 1 and 2 have features (documents) asso-

ciated to nodes. Some of the baselines, discussed beneath
2We use the Numpy and PyTorch toolkits to implement GOAT

in the 2 and 3 category, require textual information, and
hence they consume the aforementioned features. The Email
dataset has ground-truth community assignment for nodes
based on a person’s affiliation to one of the 42 departments.

We compare our method against the following 12 popular
and SOTA baselines grouped as:

1. Structure based methods: DEEPWALK (Perozzi, Al-
Rfou, and Skiena 2014), NODE2VEC (Grover and
Leskovec 2016), WALKLETS (Perozzi, Kulkarni, and
Skiena 2016), ATTENTIVEWALK (Abu-El-Haija et al.
2017), LINE (Tang et al. 2015).

2. Structure & content based methods: TRIDNR (Pan et al.
2016), TADW (Yang et al. 2015), CENE (Sun et al. 2016).

3. Structure & content based Context-sensitive methods:
CANE (Tu et al. 2017), DMTE (Zhang et al. 2018).

4. Structure based context-sensitive method: SPLIT-
TER (Epasto and Perozzi 2019).

5. GCN based method:VGAE (Kipf and Welling 2016).

Note that the closest algorithm to GOAT is SPLITTER, not
because of the algorithmic design but because both of them
are topology (structure) based context-sensitive methods.
We also include a variant of GOAT called GOATGLOBAL
that uses the global embedding of the nodes. Experiments
are carried out on two tasks, which are link prediction and
node clustering, all of them are performed using a 24-Core
CPU and 125GB RAM Ubuntu 18.04 machine.

Link Prediction

Link prediction is an important task that graph embedding
algorithms are applied to. Particularly context-sensitive em-
bedding techniques have proved to be well suited for this
task. Similar to existing studies we perform this experiment
using a fraction of the edges as a training set. We hold out
the remaining fraction of the edges from the training phase
and we will only reveal them during the test phase, results
are reported using this set. All hyper-parameter tuning is per-
formed by taking a small fraction (20%) of the training set
as a validation set.

Setup: In-line with existing techniques (Tu et al. 2017;
Zhang et al. 2018), the percentage of training edges ranges
from 15% to 95% by a step of 10. The hyper-parameters of
all algorithms are tuned using random-search. For some of
the baselines, our results are consistent with what is reported
in previous studies, and hence for Cora and Zhihu we simply
report these results.

Except the “unavoidable” hyper-parameters (eg. learning
rate, regularization/dropout rate) that are common in all the
algorithms, our model has just one hyper-parameter, which
is the neighborhood size – N , and for nodes with smaller
neighborhood size we use zero padding. As we shall verify
later, GOAT is not significantly affected by the choice of this
parameter.

The quality of the link prediction is measured using the
area under the receiver operating characteristic curve (AUC)
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Dataset Algorithm
% of training edges

15% 25% 35% 45% 55% 65% 75% 85% 95%

Cora

DEEPWALK 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3
NODE2VEC 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2
WALKLETS 69.8 77.3 82.8 85.0 86.6 90.4 90.9 92.0 93.3
ATTENTIVEWALK 64.2 76.7 81.0 83.0 87.1 88.2 91.4 92.4 93.0
TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.0 92.7
TRIDNR 85.9 88.6 90.5 91.2 91.3 92.4 93.0 93.6 93.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7
DMTE 91.3 93.1 93.7 95.0 96.0 97.1 97.4 98.2 98.8
SPLITTER 65.4 69.4 73.7 77.3 80.1 81.5 83.9 85.7 87.2
GOATGLOBAL 93.3 95.4 96.2 97.1 97.4 97.6 97.5 98.0 98.3
GOAT 96.7 96.9 97.1 97.5 97.6 97.6 97.8 98.0 98.2

GAIN% 5.4% 3.8% 3.4% 2.5% 1.6% 0.5% 0.4%

Zhihu

DEEPWALK 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8
LINE 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1
NODE2VEC 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5
WALKLETS 50.7 51.7 52.6 54.2 55.5 57.0 57.9 58.2 58.1
ATTENTIVEWALK 69.4 68.0 74.0 75.9 76.4 74.5 74.7 71.7 66.8
TADW 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0
TRIDNR 53.8 55.7 57.9 59.5 63.0 64.2 66.0 67.5 70.3
CENE 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8
CANE 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4
DMTE 58.4 63.2 67.5 71.6 74.0 76.7 78.7 80.3 82.2
SPLITTER 59.8 61.5 61.8 62.1 62.1 62.4 61.0 60.7 58.6
GOATGLOBAL 66.1 74.6 74.1 75.2 73.2 68.8 71.1 73.6 74.7
GOAT 82.2 80.7 82.3 82.4 85.1 85.3 84.5 84.4 83.7

GAIN% 12.8% 12.7% 8.3% 6.5% 8.7% 8.9% 5.8% 4.1% 1.5%

Email

DEEPWALK 69.2 71.4 74.1 74.7 76.6 76.1 78.7 75.7 79.0
LINE 65.6 71.5 73.8 76.0 76.7 77.8 78.5 77.9 78.8
NODE2VEC 66.4 68.6 71.2 71.7 72.7 74.0 74.5 74.4 76.1
WALKLETS 70.3 73.2 75.2 78.7 78.2 78.1 78.9 80.0 78.5
ATTENTIVEWALK 68.8 72.5 73.5 75.2 74.1 74.9 73.0 70.3 68.6
SPLITTER 69.2 70.4 69.1 69.2 70.6 72.8 73.3 74.8 75.2
GOATGLOBAL 78.6 80.3 80.8 81.1 81.3 81.8 82.0 82.1 82.6
GOAT 78.9 81.0 81.2 81.4 81.7 82.4 82.3 82.6 83.1

GAIN% 8.3% 5.6% 3.4% 0.8% 1.8% 2.7% 2.4% 1.5% 1.7%

Table 3: AUC results for the link prediction task on the Cora, Zhihu, and Email datasets.

and average precision (AP) scores. AUC indicates the prob-
ability that a randomly selected pair (u,w) /∈ E will be
ranked lower than an edge (u, v) ∈ E in the test set. The
AP indicates the quality of the overall ranking as a summary
of precision and recall scores at different thresholds. Rank
of a pair of nodes is computed as the dot product of their
representation. For all the algorithms the representation size
– d is 200 and GOAT’s configuration is shown in Table 2.

Results: The results for Cora, Zhihu, and Email datasets
are reported in Table 3. GOAT outperforms the SOTA base-
lines in all cases for Zhihu and Email, and in almost all
cases for Cora. One can see that as we increase the percent-

age of training edges, performance significantly increases
for all the baselines. As indicated by the “Gain” row, GOAT
achieves up to 12.8% improvement over SOTA and context-
sensitive techniques. Notably the gain is pronounced for
smaller values of percentage of edges used for training. This
shows that GOAT is suitable both in cases where there are
several missing links and most of the links are present.

Recently, several studies have pursued a type of GRL
models known as graph convolutional neural networks
(GCNs) (Kipf and Welling 2017; Velickovic et al. 2017;
Abu-El-Haija et al. 2019; Hamilton, Ying, and Leskovec
2017; Wu et al. 2019; Kipf and Welling 2016). Though most
of them are widely used for semi-supervised node classifi-
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Figure 3: AUC and AP results of VGAE and GOAT for link prediction task.

cation, in this study we compare GOAT with a type of GCN,
called variational graph auto-encoder (VGAE) that is com-
monly used for the link-prediction task (Kipf and Welling
2016; Schlichtkrull et al. 2017) using three of the remaining
datasets from the VGAE paper. For a fair comparison, we
use exactly the same configuration, that is, the same training
(90%) and test (10%) sets provided by the authors.

In Fig. 3 we report the AUC and AP empirical results on
Citeseer, Cora2 and Pubmed datasets, yet again we show that
GOAT outperforms VGAE in almost all the cases, by upto
8%. A consistent observation that we have in the above re-
sults is that, compared to all the baselines GOAT’s perfor-
mance is robust even when we have little observation.

Node Clustering

Nodes in a network has the tendency to form cohesive struc-
tures based on shared latent properties. These structures are
commonly known as groups, clusters or communities and
their identification has important real-world applications.
We use the Email dataset since it has 42 ground truth com-
munities. Recall that this dataset has only structural informa-
tion, thus we have included structure-based methods only.

Setup: Since each node belongs to exactly one cluster,
we employ the k-Means algorithm to identify clusters. The
learned representations of nodes by a certain algorithm are
the input features of the clustering algorithm. In this exper-
iment the percentage of training edges varies from 35% to
95% by a step of 20%, for the rest we use the same configu-
ration as in the above experiment.

Given the ground truth community assignment y of nodes
and the predicted community assignments ŷ, usually the
agreement between y and ŷ are measured using mutual in-
formation I(y, ŷ). However, I is not bounded and difficult
for comparing methods, hence we use two other variants of
I (Vinh, Epps, and Bailey 2010). Which are, the normalized
mutual information NMI(y, ŷ), which simply normalizes I
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Figure 4: Comparison between GOAT and GLOBAL.

and adjusted mutual information AMI(y, ŷ), which adjusts
or normalizes I to random chances.

Results: The results of this experiment are reported in Ta-
ble 4, and GOAT significantly outperforms all the baselines
by up to 19% with respect to AMI score. Consistent to our
previous experiment GOAT’s performance is not affected by
the change in the percentage of the training edges for both
NMI and AMI.

Ablation Study

To appreciate the importance of the mutual-attention compo-
nent of GOAT, we carry out an experiment by removing the
attention component. That is, instead of the context-sensitive
representations rs and rt, in Eq. 8 we use the global em-
beddings Es and Et, and refer to this variant simply as
GLOBAL. It is similar to the second-order preserving vari-
ant of LINE (Tang et al. 2015). From Fig. 4, one can clearly
see that the mutual-attention component of GOAT is crucial
for its effectiveness.
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Algorithm
%of training edges

35% 55% 75% 95%
NMI AMI NMI AMI NMI AMI NMI AMI

DEEPWALK 41.3 28.6 53.6 44.8 50.6 42.4 57.6 49.9
LINE 44.0 30.3 49.9 38.2 53.3 42.6 56.3 46.5
NODE2VEC 46.6 35.3 45.9 35.3 47.8 38.5 53.8 45.5
WALKLETS 47.5 39.9 55.3 47.4 54.0 45.4 50.1 41.6
ATTENTIVEWALK 42.9 30.0 45.7 36.5 44.3 35.7 47.4 38.5
SPLITTER 38.9 23.8 43.2 30.3 45.2 33.6 48.4 37.6
GOAT 66.5 57.2 65.6 56.7 66.4 57.9 65.5 57.0

%Gain 19% 10.3% 12.4% 7.9%

Table 4: NMI and AMI scores for node clustering experiment on the Email dataset. The Gain is with respect to the NMI only.
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Figure 5: Sensitivity of GOAT to the size of node’s neighborhood (N ) on the link prediction task.

Parameter Sensitivity Analysis

Now, we turn into analyzing the effect of the main hyper-
parameter of GOAT, which is the size of the neighborhood
(N ). In Fig 5 we show the effect of this parameter across dif-
ferent rate of training edges on the link prediction task. We
observe that, regardless of the percentage of training edges,
GOAT is not significantly affected by the change in N .

Scalability and Convergence

To empirically substantiate GOAT’s scalability, we carry out
experiments on synthetic graphs up to millions of edges,
which are generated using Barabási–Albert model. Fig. 6(A)
shows the run time (y–axis) needed to complete an epoch
for graphs with different number of edges, 50K-2M (x –
axis), and we note that GOAT can finish an epoch in ≈ 7 min
for the graph with 2M edges. Moreover, once the model hy-
perparameters are fixed, we have empirically observed that
for large and dense graphs GOAT requires small number of
epochs to converge. Fig 6(B) shows this observation, and the
y–axis indicates the number of epochs required for GOAT to
converge on 15% training edges in-order to achieve the per-
formance reported in Section .
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Figure 6: Run time (A) of GOAT on an NVIDIA QUADRO
RTX 5000 GPU and its convergence (B). The annotation in
(B) shows the fraction of training edges m′ = |E| × .15.
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Figure 7: The Les Misérables character encounter graph
with character’s modularity class indicated by colors.

Case Study: Les Misérables

To shed more light on the GOAT model, here we briefly
analyze the learned attention weights of a graph based on
the encounter relations between the characters in the Les
Misérables novel (Knuth 1993). A visualization is shown in
Fig 7, along with community affiliations (contexts) of nodes
based on modularity classes, indicated by the colors. First,
we pick two arbitrary nodes, which are nodes 25 and 55. In
Fig 8, we observe that both 25 and 55 strongly pay atten-
tion to the shared neighbors. Then, we let 55 to gossip with
another node, i.e. 48, in a different context and show the re-
sulting attention weights in Fig 9. Now, for neighbors of 55
we observe that the attention weight is concentrated on those
neighbors that had less attention in the previous gossip.

Related Work

Graph Representation Learning is usually carried out by ex-
ploring the structure of the graph and meta data, such as
node attributes, attached to the graph (Perozzi, Al-Rfou, and
Skiena 2014; Grover and Leskovec 2016; Tang et al. 2015;
Perozzi, Kulkarni, and Skiena 2016; Wang, Cui, and Zhu
2016; Yang et al. 2015; Pan et al. 2016; Sheikh, Kefato,
and Montresor 2019). Random walks are widely used to ex-
plore local/global neighborhood structures, which are then
fed into a learning algorithm. Often, an unsupervised learn-
ing objective is specified using the maximum likelihood of
neighboring nodes/attributes given a center node.

Figure 8: Visualization of the learned attention weights of
neighbors of 25 and 55.

Recently, graph convolutional networks have also been
proposed for semi-supervised network analysis tasks (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Wu et al. 2019; Velickovic et al. 2017; Abu-El-Haija et al.
2019). These algorithms are trained to learn different kinds
of neighborhood feature aggregator functions using a down-
stream objective based on partial labels of nodes. All these
methods are essentially different from our approach because
they are context-free.

Context-sensitive learning is another paradigm for NRL
that challenges the adequacy of a single representation of a
node for applications such as, link prediction, product rec-
ommendation, ranking. While some of these methods (Tu et
al. 2017; Zhang et al. 2018) rely on textual information, oth-
ers have also shown that a similar goal can be achieved us-
ing just the structure of the graph (Epasto and Perozzi 2019).
However, they require an extra step of persona decomposi-
tion that is based on microscopic level community detection
algorithms to identify multiple contexts of a node. Besides,
it is susceptible to errors propagating from wrong commu-
nity assignments. Unlike the former approaches our algo-
rithm does not require extra textual information and with
respect to the later our approach does not require any sort of
community detection algorithm.

Conclusion

In this study, we present a novel context-sensitive graph
embedding algorithm called GOAT. GOAT is inspired by
a gossip-like communication and mutual attention mecha-
nism. Each node is allowed to gossip with each neighbor by
using the remainder of the neighborhood as a message. By
capitalizing on the mutual attention mechanism GOAT al-
lows nodes to understand their contexts and infer multiple
representations per node.

GOAT learns high-quality context-sensitive representa-
tions of nodes. We have empirically evaluated the quality
of the representations and have shown that it consistently
outperforms best performing SOTA context-sensitive and
context-free baselines using 6 public datasets in link pre-
diction and node clustering tasks, exhibiting significant im-
provements of up to 12% and 19% respectively.

In a future work we seek to extend GOAT to a com-
pletely decentralized environment and investigate how node
attributes can be integrated in the GOAT framework.

Figure 9: Visualization of the learned attention weights of
neighbors of 48 and 55.
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