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Abstract

Internet user-generated data, like Twitter, offers data scien-
tists a public real-time data source that can provide insights,
supplementing traditional data. However, identifying relevant
data for such analyses can be time-consuming. In this paper,
we introduce our Perplexity variant of Positive-Unlabelled
Learning (PPUL) framework as a means to perform social
media relevance filtering. We note that this task is particularly
well suited to a PU Learning approach. We demonstrate how
perplexity can identify candidate examples of the negative
class, using language models. To learn such models, we ex-
periment with both statistical methods and a Variational Au-
toencoder. Our PPUL method generally outperforms strong
PU Learning baselines, which we demonstrate on five dif-
ferent data sets: the Hazardous Product Review data set, two
well known social media data sets, and two real case studies
in relevance filtering. All datasets have manual annotations
for evaluation, and, in each case, PPUL attains state-of-the-art
performance, with gains ranging from 4 to 17% improvement
over competitive baselines. We show that the PPUL frame-
work is effective when the amount of positive annotated data
is small, and it is appropriate for both content that is triggered
by an event and a general topic of interest.

Introduction

As a public domain data source, Twitter1 can serve as a real-
time information channel, providing insights about a num-
ber of social topics, ranging from syndromic surveillance,
a form of public health monitoring (Cameron and Sparks
2015), to collecting public opinion and feedback on topics of
social importance (Barwick et al. 2014). These examples are
indicative of the range of scholarly disciplines that use social
media data to supplement traditional sources for analysis.
The latter includes official records (for example, hospital ad-
mittance) or polls (and more generally, surveys, interviews
and focus groups) which can potentially be expensive and
time-consuming to collect. In contrast, public social media
data is often freely available and adds a real-time capabil-
ity to many applications (for example, detection of suicidal
ideation on social media (O’Dea et al. 2015)).

∗This work was performed while the author was a Post-doctoral
Fellow at the CSIRO.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://twitter.com

@USER This is urgent there is currently a 3 storey
building at church B/stop Oworoshoki Third mainland
bridge which likely to collapse. (RELEVANT)

@USER I would collapse (IRRELEVANT)

Ashes 2015: Australia′s collapse at Trent Bridge among
worst in history: England bundled out Australia for 60 ...
http://t.co/t5TrhjUAU0 (IRRELEVANT)

Figure 1: Twitter posts with the ambiguous query term, col-
lapse, outlining the difficulties of relevance filtering. Here
the target content is emergency related (1st post), as opposed
to fatigue (2nd post) or sporting metaphor (3rd post).

Collecting social media data for analysis, however, can be
challenging in that one often first needs to define queries to
retrieve relevant content from search web services, like that
of the Twitter Application Programming Interface. Work
such as (Cameron and Sparks 2015) relies on health experts
to curate a list of queries, in this case related to influenza.
(O’Dea et al. 2015) use a curated list of query terms based
on how suicide is discussed in the vernacular. These lists
are the result of careful assembly. Indeed, it can be com-
plex to curate queries to ensure that only relevant data is
collected, as described in the digital library work of (Bar-
wick et al. 2014). Although time-consuming, many analysts
employ such an approach, as these examples attest.

Figure 1 illustrates the challenges in data collection with
examples of Twitter posts containing the word collapse,
drawn from the Disaster CF20k data set (described below).
The first example (relevant) describes a bridge potentially
collapsing. The second example is not relevant, describing
a person’s fatigued state. The last example is also not rel-
evant, as it uses collapse metaphorically in the jargon of
sports commentary (cricket). Interestingly, the last exam-
ple also contains words that are potentially disaster-related,
ashes and bridge, highlighting how difficult the construction
of a manual rule set might be.2

We introduce the problem of social media relevance fil-
tering, whereby the aim is to help the analyst construct a

2Trent Bridge is the name of cricket stadium in the UK: en.
wikipedia.org/wiki/Trent Bridge
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relevant data set for analysis without resorting to overly nar-
row queries (which is time-consuming to construct and can
omit relevant content). We argue that this problem is well
suited to the Positive Unlabelled Learning, or PU Learning,
approach (Comité et al. 1999). When adapting PU Learn-
ing for text classification (Li and Liu 2003; Li, Liu, and Ng
2010), the authors note that PU Learning assumes that (1)
obtaining potentially related data is trivial (e.g, in our case,
with a general query term); (2) specifying examples of the
positive (relevant) class is easy (e.g., here with a set of query
expansion rules), but (3) representing the space of all non-
relevant content is infeasible. This makes the scenario chal-
lenging; it is not trivial to exhaustively cover all the negative
cases.

We introduce a new type of PU Learning, one that is able
to represent a text better than the vector-space approaches
used by existing methods. Specifically, we use language
modelling methods to represent the positive class, noting
that such models provide a richer representation of con-
text. Our approach uses the perplexity metric to find exam-
ples that are as different as possible to the positive exam-
ples, given a language model of that class. The intuition is
that non-relevant uses of a query word can be distinguished
better using a representation of word context that incorpo-
rates information about word order, as opposed to a bag-
of-words representation. This opens up the door for a fam-
ily of PU Learning variants, which we call perplexity-based
PU Learning, or PPUL. Exactly which language modelling
method is used is a design choice for the system architect,
hence our reference to PPUL as a framework. Here, we
present two options: a statistical language model, to capture
sequential word order, and a neural network language model
(Variational Autoencoders), to encode the entire sentence.

In the remainder of this paper, we outline our approach
and related PU Learning methods. Our experiments focus on
three research questions: RQ1 Can we verify our approach
works for PU Learning?; RQ2 Does PPUL work on Twitter
data?; and RQ3 Does PPUL work with a real (relevance fil-
tering) task? In RQ1, we demonstrate the efficacy of PPUL
by evaluating on an established PU Learning data set intro-
duced by (Bhat and Culotta 2017), where we obtain state-of-
the-art results. Our results for RQ2 demonstrate that PPUL
is effective on a number of public Twitter data sets, adapted
for evaluating PU Learning methods. Our results for RQ3
illustrate how the approach works in practice, with evalua-
tions in two real social media case studies, each with manual
annotations to measure performance. Finally, in our discus-
sions, we describe how we have integrated this approach into
an application workflow.

Our contributions are thus: (1) we introduce a novel PU
Learning framework; (2) we obtain state-of-the-art results
on the Hazardous Product Review data set; and (3) we pro-
vide a rich set of experiments and discussions outlining the
scenarios in which PPUL is appropriate. We find that our ap-
proach effectively capitalises on limited positive annotated
data, thus potentially making this an attractive approach for
real world monitoring where the expert’s time is limited and
expensive. Furthermore, we find this is the case for both con-
tent triggered by events as well as general topics of interest.

PU Learning for Text Classification

In this work, we build on the PU Learning approach (Comité
et al. 1999), as adapted for text classification by (Li and Liu
2003) and further explored by the same authors (Li, Liu, and
Ng 2010). This latter work is interesting in its exploration of
the PU Learning problem, and we base our exposition of the
problem in part on (Li, Liu, and Ng 2010).

Li, Liu, and Ng note that for many real-world binary text
classification problems, if one is not careful with obtaining
a representative sample for the negative case, classification
performance can actually be “harmful to the task”. The prob-
lem arises due to covariate shift between the negative class
data in the training set and the real-world data, which might
be collected by a production system. Li, Liu, and Ng argue
that PU Learning is a suitable approach for such situations,
where it is also easier to obtain a representative sample of
the positive case. They demonstrate this by discarding the
negative annotations in their data sets (Reuters newsgroup
data), and observe only a small drop in performance.

We note the conditions for PU Learning match our social
media relevance filtering scenario. It is much easier for users
of our software to say what they want to collect rather than
what they do not want to collect. However, as noted above,
existing PU Learning work, e.g., (Li and Liu 2003), uses
a bag-of-words representation of text which cannot capture
sequence information, motivating our investigation of a lan-
guage modelling approach.

Preliminaries

We begin with some notation to assist with the description of
our modification to PU Learning, drawing on the characteri-
sation of the problem as outlined by (Li, Liu, and Ng 2010),
and re-use their terminology.

Let D = {Pd ∪ U} denote a data set, where Pd is a set of
positive samples xpd

⊆ Pd (relevant instances), and U is a
set of unlabelled samples. Let U = {Pu ∪N} indicate unla-
belled samples, consisting of another set of positive samples
xpu ⊆ Pu (relevant instances) and a set of negative sam-
ples xn ⊆ N (irrelevant instances). Let y be the binary label
(tweet relevance) to be predicted, where y = +1 for positive
samples and y = −1 for negative samples. The goal of (in-
ductive) PU learning is to learn a scoring function from Pd

and U that can be used to compute the likelihood of an unla-
belled sample being positive (y = +1), allowing separation
of Pu and RN ⊆ N . Following (Li, Liu, and Ng 2010), PU
Learning can then be described as a 2-step process: (1) ex-
tract reliable negatives (RN ) samples from U ; (2) build a
binary classifier from training data comprising Pd and RN .

Proposed Approach

We propose the use of language modelling methods and the
perplexity score as a means of separating content that is un-
like the positive class. The language model, which accounts
for word selection conditioned on some context, is used to
represent the positive class. Using this model, we can assign
a probability to a text data instance (from a user-generated
post/review), x, treated as a sequence of words, w1 . . . w|x|.
Intuitively, perplexity, as an entropy-related measure, will
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indicate how “surprised” one is, given some model, by a
new unseen text. Our rationale is that, for a text in the posi-
tive class, xpd

⊆ Pd, perplexity will be low (unsurprising).
Conversely, for a text in RN , perplexity should be high (sur-
prise) related to unexpected word usage.

More formally, we define a function f(xi) that provides
a perplexity score for each tweet xi ∈ U to be used for
ranking. Equation 1 shows a general form for perplexity:

perplexity(xi) =
−1

|xi|
|xi|∑

j=1

log pθ(wj |•) (1)

where xi is a text in the collection x, and |xi| is the number
of words in xi. θ are the parameters of a language model, and
• is an implementation-specific representation of the context
upon which wj is conditioned.

In this paper, we describe two approaches to obtain a
model for the positive class that provides the probability
pθ(wj |•). Our premise is that the probability distribution of
elements in Pd is similar to the probability distribution of
those positive elements in the unlabelled set, Pu. The prob-
ability distribution for elements of the negative class in the
unlabelled set, N , however, will differ. Using the perplexity
score, we can distinguish Pu from N . A lower perplexity
score indicates that the text is well represented by the model
(of the positive class). Therefore, the extracted RN from U
are the ones with the highest perplexity with respect to a
model derived from Pd. For all unlabelled data, we calculate
and sort by perplexity. We use the top n samples with the
highest perplexity as our reliable negatives RN , choosing
n = |Pd| for a balanced data set. We refer to this framework
as Perplexity PU Learning, or PPUL.3

We define two approaches for calculating perplexity. The
first uses an statistical n-gram language model to account for
word order in the context preceding some word wj , where
j is a position in the sentence. The second approach utilises
the entire sentence as context in assigning the probability
for a word, wj . For the latter, we employ Variational Auto
Encoders (VAE). We now describe each of these in turn.

Statistical Language Modelling To demonstrate the util-
ity of perplexity as given by a language model, we employ
methods that have proven successful in Statistical Machine
Translation (SMT), using a widely-used library, KenLM, to
obtain n-gram language models from data and calculate per-
plexity (Heafield 2011; Heafield et al. 2013).

The language model estimates the probability of a word
wj , given some preceding words. For example, a tri-gram
language model would condition on (wj−1, wj−2). In the
KenLM library, the probability estimate is implemented us-
ing maximum likelihood estimation with modified Kneser-

3We note that the choice of n can affect performance. Here,
to introduce PPUL, we choose n to create balanced data sets for
training classifiers. We leave tuning of this hyperparameter to fu-
ture work.

Ney smoothing (Chen and Goodman 1998):

pθ(wj |wj−1, wj−2) =

max(C(wj , wj−1, wj−2)−D, 0)

C(wj−1, wj−2)
+

λp̂θ(wj |wj−1)
(2)

where C(wi . . . wj) denotes the frequency count of a word
sequence as seen in the training data. λ is the interpolation
weight, and D is the discount coefficient. The probability
function in Equation 2 is substituted into Equation 1 to re-
place pθ(wj |•) where • is the Markov context used in the
n-gram language model.

Variational Autoencoder The statistical n-gram language
model inherently captures word order in the context upon
which a word is conditioned. However, it uses only the left-
most context (occurring before the word in question). Alter-
natively, the conditioning context can occur on either side
of the word in question. To model context in this manner,
we use the Variational Autoencoder (VAE) method, a deep
unsupervised generative model. In essence, the method in-
volves learning to recreate the training data using a neu-
ral network. As such, the network’s hidden layers provide
a lower-dimensional feature representation, with parame-
ter tuning based on reconstructing the original input data
(Kingma and Welling 2013).

In this work, we use the VAE defined for document mod-
elling (Miao, Yu, and Blunsom 2016) which is made up of
an encoder (inference) and decoder (generation) network.
The encoder learns the latent variables z from an input x
(qφ(x̂|z)), and here is implemented with a multilayer per-
ceptron (MLP) which compresses the bag-of-words repre-
sentation of a text xi ∈ x into a continuous distributed vec-
tor z. The decoder is used to reconstruct the input as x̂ (as
in a generative model, pθ(x̂|z)). During training, the model
parameters (φ and θ) are optimised by maximising the like-
lihood of the original input data being reconstructed using
stochastic back-propagation.

We use the decoder as an explanatory model, as it can pro-
duce a probability distribution for words at each position of
some input text, where the probability of each word wi is
conditioned on the latent variables z. We argue that the sur-
rounding words around wj provided as input are captured by
the latent variables (as a lower-dimensional representation),
providing a better representation of the context that will af-
fect the probability of generating wi.

More formally, the probability of selecting a word using
VAE is:

pθ(wj |z) =
exp(−zTRwj + bwj

)
∑|V |

k=1 exp(−zTRwk + bwk
)

(3)

where R is the word embedding matrix, and bwj
is the bias

term. Using VAE, pθ(wj |z) is substituted into Equation 1,
where the latent variables z are now the contextual repre-
sentation that replaces •.

To train our VAE model, we use stochastic gradient de-
scent with the ADAM optimiser (Kingma and Ba 2014),
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with an initial learning rate of 0.001. 500-dimensional word
embeddings are randomly initialised. A two-layered MLP is
employed with rectified linear activation functions for the
encoder, and a 50-dimensional vector is used to represent
latent variables. We use a single training sample to estimate
stochastic gradients, namely a batch size of 1. This makes
more frequent updates of parameters and speeds up the con-
vergence by avoiding local optima.

Relevance Text Classification

Once the reliable negative set RN is selected, we can use
any text classification method to obtain a binary relevance
filter in the PPUL framework. The choice of method is not
the focus in this paper, and so we report on classifiers trained
using the Logistic Regression method, for ease of explana-
tion. One can use any classifier, and we return to our use of
Convolutional Neural Networks (CNN) when we discuss a
deployment case.

Experimental Framework

Experiment Motivations

We now revisit the research questions that we use to struc-
ture our experiments. In RQ1, we ask whether a represen-
tation that captures sequential word order, resulting in our
proposed PPUL, outperforms the bag-of-words representa-
tions used in existing PU Learning approaches. To measure
this, we examine how PPUL performs on an established PU
Learning data set compared to existing PU Learning ap-
proaches. We use the PU Learning data set introduced by
(Bhat and Culotta 2017), focusing on user-generated reviews
of hazardous products.
Although there is nothing specific in our description of
PPUL to the type of text data (social media or otherwise),
given that our proposed application is for social media rel-
evance filtering, in RQ2, we ask how well PPUL works on
Twitter data, which can tend to be shorter than other text
types. This line of investigation is motivated by the fact that
Twitter text can sometimes pose data sparsity problems for
machine learning (Saif, He, and Alani 2012). We adapt two
publicly available binary labelled social media data sets, and
follow an established PU Learning evaluation procedure to
adapt these for our purposes (Ren, Ji, and Zhang 2014).

Continuing an investigation of multiple social media data
sets, our final research question (RQ3) asks: how does PPUL
work with a real task requiring relevance filtering? We part-
ner with a social media researcher from another discipline
(psychology/social science) and look at the performance of
PPUL for performing relevance filtering in two case stud-
ies.4

Hazardous Product Review PU Learning Data Set

The hazardous product review PU data set (Product Re-
view) collected by (Bhat and Culotta 2017) was assembled
to tackle the problem of identifying user-generated reviews

4In this paper, we report on the mechanics of relevance filtering
in support of downstream research. The research findings from the
analyst’s perspective are outside the scope of this paper.

Product Review
Unlabelled 915,446

Positive 2,010
Test set Positive 97
Test set Negative 351

Table 1: Summary of the Product Review data set.

indicating a product is hazardous. Such reviews might occur,
for example, in online shopping platforms such as Amazon.
For this task, online positive examples are available, when
the hazardous product is brought to the attention of govern-
ment regulators. In this data set, 2,010 incident reports on
children products were extracted from a U.S. government
department consumer complaints database, forming the set
of positive samples. (Bhat and Culotta 2017) used Amazon
product reviews (915,446) as a set of unlabelled samples.
Bhat and Culotta performed a manual annotation task on a
further 448 Amazon reviews for the test data. Descriptive
statistics for this data set are presented in Table 1.

Social Media Data Sets and Methodology

To test that the proposed PPUL methods will still work on
social media data, which is typically shorter than other kinds
of online text, we use two established Twitter data sets anno-
tated with binary labels for evaluation. In this work, the data
sets are Disaster CF10K5 and Bullying Traces6. PPUL is ap-
plicable to any binary classification task, and we can think
of the original positive binary class labels in each data set as
surrogates for relevance (e.g., imagine the task is to collect
all content related to disasters or cyberbullying).

Starting with completely annotated data provides the
ground truth data for us to measure the performance of
PPUL. To do this, we follow the procedure of (Ren, Ji, and
Zhang 2014), replicating the PU Learning scenario by ignor-
ing some of the labels in the training data which simulates
the unlabelled data set. Ren, Ji, and Zhang control how many
labels, specifically positive labels, are discarded, resulting in
an evaluation framework that can reveal how a PU Learning
algorithm might function in different scenarios where posi-
tive data might be more or less scarce.

We first use 90:10 split to divide the data into training
and test sets, respectively. Following Ren, Ji, and Zhang, we
keep 10%, 20% and 40% of the labelled positive data in the
training data to form P , which would then leave the remain-
ing 90%, 80% and 60% positive training data, respectively,
to be combined with the labelled negatives N , to form the
set U , where the labels (whether positive or negative) are
ignored during machine learning in this framework.

We now describe the two data sets, the collection and
annotation processes used to assemble them. A descriptive
summary of the data sets for our PU learning experiments is
shown in Table 2.
Disaster CF10K Data Set: This is a CrowdFlower data
set containing 10,860 tweets which were harvested using

5https://data.world/crowdflower/disasters-on-social-media
6http://research.cs.wisc.edu/bullying
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data set Type Size Label Size

Bullying Traces
Training 2,486 Positive 56 (10%) 112 (20%) 225 (40%)

Unlabelled 2,430 2,374 2,261
Test 276 276

Disaster CF10K
Training 9,774 Positive 407 (10%) 826 (20%) 1,652 (40%)

Unlabelled 9,280 8,948 8,122
Test 1,086 1,086

Table 2: Summary of the social media data sets.

roughly 200 disaster-related keywords such as ablaze and
hailstorm. Using crowdsourcing methods, these were then
manually annotated with Relevant if it refers to a disaster
event (a positive tweet). Otherwise, it was annotated with
Not Relevant (a negative tweet). The original corpus con-
tains 4,673 positive tweets and 6,187 negative tweets.
Bullying Traces Data Set: We used the Bullying Traces data
set (version 3) which originally contained 7,321 Twitter an-
notations and was released in 2015 (Sui 2015). This data set
was distributed only with Twitter message IDs (as Twitter
terms and conditions dictate). Unfortunately, for this work,
we were only able to recover the contents of 2,762 Twitter
posts (the rest have presumably since been deleted and are
no longer available). The original data set was assembled
using the query terms: bully, bullied, bullying. Our version
of the data set contains 701 positive (bullying) tweets and
2,061 (non-bullying) negative tweets. Here bullying refers
to the report of a bullying episode, accusing someone as a
bully, revealing oneself as a victim, or a cyber-bullying at-
tack.

Social Media Case Study Data Sets

The following case study data sets allow us to gauge how
our approach works in practice with social media analysis
tasks. Here, we note that the first case study focuses on very
specific content centred around a news event. The second
represents data related to a topic without key dates associ-
ated with an event and is broader in scope. As such, the two
case studies allow us to examine how PPUL works when the
data set is smaller and event-driven, and what happens when
the data set is larger but not event-driven.
Honey Food Quality (HFQ) Data Set: This data set was as-
sembled in collaboration with researchers interested in using
social media to study trust in food origins. Specifically, the
end goal of this work was to study issues of trust regard-
ing the food industry and its products. For the food industry,
public perception and trust in food branding and labelling
are crucial for the security of the industry and the security of
the wider economy. In this case, Australian journalists had
reported on incorrect labelling of the honey product, trigger-
ing social media discussions.7 These discussions were the
target of the data collection and, from the analyst’s perspec-
tive, they may offer insights about the social perception of
honey produce.

7https://www.abc.net.au/news/2018-09-03/
capilano-and-supermarkets-accused-of-selling-\\fake-honey/
10187628

In this case study, the query terms were aushoney, aus
honey, australian honey, and aussie honey, given that the
case was in Australia. These were used to collect data from
30 July to 17 October, 2018. We refer to this as the “raw”
data set, R. The analyst defined simple rules outlining rel-
evant content using keyword matching with terms such as
fake, pure, and counterfeit. These rules were used to filter
relevant content in R, providing the positive set Pd (recall
that we noted that this is current standard practice for many
data scientists to define a relevant set). The remaining data
from the original queries was treated as the unlabelled set
U . To evaluate performance, we created a test set, T , which
was based on a sample of Pd and U . The analyst and a
colleague manually annotated T for relevance. There was
a strong level of agreement for this annotation task, with a
Kappa of 0.89. The sets Pd and U were updated to remove
any intersection with T . The updated Pd and U (disjoint with
T ) were then used for training.

This scenario is amenable to PU Learning because the
negative examples are vast, and it is not possible to exhaus-
tively describe these. In addition to the obvious romantic
sense of honey, it so transpired that the current Australian
TV series of The Bachelor had a character/participant re-
ferred to as the Honey Badger, illustrating how popular cul-
ture can introduce unforeseen referents, leading to ambigu-
ity of meaning. The descriptive statistics for the Honey Food
Quality (HFQ) data set are presented in Table 3.
Food Quality Concerns (FQC) Data Set: A second study
with the same analyst was run looking again at the percep-
tion of the food industry. However, instead of focusing on
a single product category, the focus was on the public per-
ception of general food quality, a much broader topic. The
motivation for the analyst was to help provide feedback to
the food industry about relevant consumer factors, in the ef-
fort to facilitate economic growth and, eventually, improved
consumer satisfaction.

The query terms used to collect data were phrases (and
their variants) including fresh food, fresh produce, food qual-
ity, food miles, food time to market, processed food and man-
ufactured food. The data set preparation was performed in
an analogous manner to the creation of the HFQ data set.
Data was collected from 24 October to 11 November, 2018,
to produce the “raw” tweets, R. These were filtered using
terms like support local, best, healthy, safety, security, and
affordable to produce the positive set, Pd. The remaining set
was treated as U . To measure performance, a test set, T , was
created based on a sample of Pd and U . The set T was manu-
ally annotated by the analyst and a colleague, and there was
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HFQ FQC
Unlabelled 770 7,677

Positive 195 5,000
Test set 400 400

Table 3: Summary of the case study data sets.

a high level of agreement in this process, with a Kappa of
0.91. Pd and U were updated to remove any overlap with
T . The descriptive statistics for the Food Quality Concerns
(FQC) data set are also presented in Table 3.

Prior Work and Baseline Methods

Here we outline the related prior approaches to PU Learning
that we use as our baseline methods.

• Naive Baseline+LR: In PU Learning, the aim is to in-
fer the subset of negative examples, N , from U . For this
naive baseline, we assume N = U . Then using labelled
data for the two classes, Pd and RN , where RN ⊂ U and
|RN | = |Pd|, we train a binary classifier, using a logis-
tic regression classifier for consistency with the proposed
methods (Li and Liu 2003).

• One-class SVM (Schölkopf et al. 2001): This approach,
a standard baseline to PU Learning, couches the text clas-
sification problem as one of anomaly detection, using an
SVM to model just the positive class (Pd). Test set data is
then compared to this model. Those that are close to this
model are treated, in our case, as relevant. Otherwise, the
rest (detected anomalies) are treated as non-relevant.

• Rocchio+EM (Li and Liu 2003): to find RN , cosine sim-
ilarity is first used to remove unlabelled content that is
similar to the positive class. Rocchio classification (Roc-
chio 1971) is performed with the positive and remaining
unlabelled set to propose the RN set, using tf-idf vec-
tor space to model context as a bag-of-words. To per-
form the classification, expectation maximisation (EM)
(Dempster, Laird, and Rubin 1977) is used to iteratively
learn a Bayesian classifier.

• Rocchio+SVM (Li and Liu 2003): This is similar to the
previous method, Rocchio+EM, except that an SVM clas-
sifier is used instead of expectation-maximisation.8

• Instance Weighting (Elkan and Noto 2008): This ap-
proach, described in the context of relevance filtering for
biomedical text, operates by automatically labelling the
likely positive examples in the unlabelled data U . The ap-
proach relies on estimates of the probability of a positive
label, for some text, which the authors show is directly
proportional to the probability that a text is labelled. Us-
ing estimates from Pd, one can then estimate this proba-
bility. By identifying the positive data in U and removing
them from the set, the remainder of U is treated as the
negative labelled set, and an SVM classifier is trained.

8For both Rocchio+EM and Rocchio+SVM, we use the
implementation by the authors at https://www.cs.uic.edu/∼liub/
LPULPU-download.html.

Precision Recall F1
Naive Baseline + LR 0.392 0.500 0.439
OneClass SVM 0.192 0.234 0.211
Instance Weighting 0.392 0.500 0.439
Rocchio+EM 0.768 0.753 0.760
Rocchio+SVM 0.876 0.752 0.810
Feature Weighting 0.858 0.828 0.843
PPUL: LM+LR 0.705 0.814 0.756
PPUL: VAE+LR 0.837 0.881 0.855

Table 4: Experimental results for Product Review.

• Feature Weighting (Bhat and Culotta 2017): uses do-
main adaptation methods to modify feature weights,
based on the occurrence of the features in U . Terms that
are strongly indicative of the positive label in U have
larger feature weights than terms that are less indicative.
We note that the version of this method outlined in (Bhat
and Culotta 2017) used some domain specific filtering
rules for the review data set. The original version first fil-
tered U using the star-rating metadata one finds with re-
views in order to identify poor reviews which are more
likely to be hazardous products. Such rules can limit the
general applicability of this method. In contrast, our pro-
posed methods do not rely on any such metadata. Our im-
plementation of the baseline is adapted from (Bhat and
Culotta 2017).9

Performance Metrics

We report on precision, recall, and F1 as is typical for classi-
fication performance. All the evaluation measures are calcu-
lated on the positive label, since the purpose of PU learning
is to identify positive samples. Let Ŷ refer to the set of pre-
dicted labels for the positive class, Ŷtrue be the correct pre-
dictions, and Y represent the set of positive examples in the
respective test sets. We use standard performance metrics:

precision =
|Ŷtrue|
|Ŷ | (4)

recall =
|Ŷtrue|
|Y | (5)

F1 =
2× precision × recall

precision + recall
(6)

where |Y | represents the size of some set, Y . The metrics all
range from [0, 1] and the higher the value, the better.

For the social media data sets, Disaster CF10K and Bul-
lying Traces, since a sampling procedure is employed, we
repeat each experiment three times. The reported metrics for
these data sets are averaged across the repeated experiments,
for which we also report standard deviation (Tables 5 and 6).

375



Method
Bullying Traces Disaster CF10K

10% 20% 40% 10% 20% 40%
Avg F1 Avg F1 Avg F1 Avg F1 Avg F1 Avg F1

Naive Baseline + LR 0.129 (0.008) 0.222 (0.013) 0.370 (0.084) 0.185 (0.005) 0.303 (0.008) 0.552 (0.019)
OneClass SVM 0.084 (0.391) 0.222 (0.448) 0.370 (0.500) 0.307 (0.399) 0.477 (0.489) 0.581 (0.617)

Instance Weighting 0.391 (0.161) 0.448 (0.046) 0.500 (0.067) 0.399 (0.012) 0.489 (0.012) 0.617 (0.010)
Feature Weighting 0.632 (0.065) 0.660 (0.035) 0.704 (0.037) 0.594 (0.017) 0.643 (0.017) 0.668 (0.020)

Cosine-Rocchio EM 0.506 (0.127) 0.753 (0.064) 0.815 (0.011) 0.509 (0.009) 0.622 (0.020) 0.715 (0.020)
Cosine-Rocchio SVM 0.230 (0.083) 0.538 (0.051) 0.722 (0.035) 0.341 (0.005) 0.523 (0.030) 0.672 (0.020)

PPUL: 2-gram LM + LR 0.765 (0.010) 0.786 (0.004) 0.787 (0.014) 0.685 (0.004) 0.683 (0.006) 0.707 (0.011)
PPUL: VAE + LR 0.740 (0.045) 0.777 (0.048) 0.782 (0.013) 0.688 (0.009) 0.712 (0.005) 0.717 (0.011)

Table 5: Performance on the social media data sets.

Experimental Results

RQ1: Validating PPUL with PU Learning data

We start by showing how the PPUL variants perform on the
Product Review data set (Table 4). The competitive baselines
are Rocchio+EM, Rocchio+SVM and Feature Weighting.
Of the baselines, Feature Weighting performs the best. How-
ever, we note that the implementation of Rocchio+EM and
Rocchio+SVM had memory issues with the full data set, and
that we were forced to use a sample of 10, 000 instances of
the unlabelled data set, which may degrade performance.10

Our PPUL variants performs favourably, with the
PPUL:VAE+LR variant outperforming all baselines. This
demonstrates that the proposed method is suited to the PU
Learning problem, as represented by this data set. Notably,
although the Feature Weighting method was introduced with
respect to this data set, our PPUL:VAE+LR method outper-
forms it. Recall that the Feature Weighting baseline relies
on the unlabelled data having metadata to identify good and
poor reviews (the stars), making the applicability of the ap-
proach limited in the general case. In contrast, our methods
do not rely on any such metadata.

RQ2: Measuring performance on social media data

Having demonstrated in RQ1 that PPUL approach is indeed
suitable for PU Learning, we evaluated its performance on
established labelled social media (Twitter) data sets, which
have been adapted for evaluating PU Learning (as described
above). Table 5 shows the experimental results measured by
average F1 (with standard deviations in parenthesis) for the
two data sets; Disaster CF10K and Bullying Traces.

To begin with, we notice that the PU Learning ap-
proaches (Instance Weighting, Feature Weighting, Roc-
chio+EM, Rocchio+SVM and our two PPUL approaches)
all outperform a naive treatment which is to use all the un-
labelled data as negatives and to use OneClass SVM. From
this, we conclude that, at least for Twitter data, some par-
titioning of the unlabelled data using PU Learning can im-
prove downstream relevance filtering.

In both data sets, we observe that, in almost all cases,
one of the PPUL variants is consistently superior to all the

9https://github.com/tapilab/icwsm-2017-recalls
10Given that this distributed implementation of (Li and Liu

2003) is a binary executable, we were unable to identify if this was
a theoretical or an implementation limitation.

baselines on the task of relevant tweet identification. The
exception is the Bullying Traces case using 40% of the posi-
tive data for training. In this case, the Rocchio+EM method
slightly outperforms the PPUL methods by approximately
2 points. Indeed, this is a strong baseline, the third-best ap-
proach for all other testing conditions. In addition, the Roc-
chio methods have the ability to represent context, albeit in a
more rudimentary form than our proposed methods (i.e., as
a bag-of-words, whereas we use language modelling). That
being said, it edges ahead in only one of the six conditions.

In Table 6, we present additional detail on two of these
conditions. The table shows the average precision, recall and
F1 scores for the Rocchio+EM baseline and best PPUL sys-
tem for both Twitter data sets, with training on 40% of the
positive data. We note that the PPUL systems favour recall,
whereas the Rocchio+EM baseline favours precision.

In general, with more positive data, all PU learning ap-
proaches do better. Returning to Table 5, what is interest-
ing is how the margin between the PPUL variants and the
best baseline approach changes as the size of P changes. For
the Bullying Traces, at 10%, the best baseline is the Feature
Weighting baseline, which PPUL outperforms with a gain
of 13%. This margin drops when using more positive data
(20%) to approximately 4% improvement by PPUL:LM+LR
over the Rocchio+EM approach (the best baseline at 20%)
for the Bullying Traces. Similar trends can be seen in results
for the Disaster CF10k data set. This highlights the strength
of the PPUL approach in efficiently capitalising on limited
positive annotated data, potentially making this an attractive
approach for applications where the expert’s time for defin-
ing or annotating positive data is limited and expensive, as
in our context.

Finally, we note that when the data set is smaller in size,
the statistical language model variant of PPUL may be bet-
ter, as in the case of the Bullying Traces data set. For a larger
data set, like Disaster CF10K (and indeed the Product Re-
view data set which is larger again), the VAE+LR variant of
PPUL works best. We suspect that the VAE approach starts
to show its value only when there is sufficient data for the
neural network approach to perform training adequately.

RQ3: Performance on Two Application Scenarios

Table 7 presents the performance of the different PU Learn-
ing approaches on our case study data sets. Again, we see
that it is a PPUL variant that performs best, both in the
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Methods Bullying Traces (40%) Disaster CF10K (40%)
Prec Recall F1 Prec Recall F1

Rocchio+EM 0.761 (0.022) 0.879 (0.003) 0.815 (0.011) 0.857 (0.006) 0.613 (0.027) 0.715 (0.020)
Best PPUL 0.654 (0.018) 0.991 (0.003) 0.787 (0.014) 0.664 (0.012) 0.780 (0.011) 0.717 (0.011)

Table 6: Average precision, recall and F1 scores for the Bullying Traces and Disaster CF10K sets (40% of positive data).

Methods FQC HFQ
Prec Recall F1 Prec Recall F1

Naive Baseline + LR 0.68 0.878 0.766 0.974 0.342 0.507
OneClass SVM 0.682 0.845 0.755 0.982 0.252 0.401
Instance Weighting 0.665 0.878 0.757 0.971 0.459 0.624
Feature Weighting 0.689 0.873 0.77 0.965 0.369 0.534
Cosine-Rocchio EM 0.667 0.958 0.786 0.976 0.559 0.711
Cosine-Rocchio SVM 0.674 0.920 0.778 0.963 0.351 0.632
PPUL: LM+LR 0.708 0.944 0.809 0.904 0.595 0.717
PPUL: VAE+LR 0.537 1.000 0.698 0.632 0.968 0.765

Table 7: Performance on the case studies: Food Quality Concerns (FQC) and the Honey Food Quality (HFQ) data sets

case of an event-driven data set (HFQ) and a non-event re-
lated data set (FQC). In the case of the HFQ data set, the
PPUL:VAE+LR method works the best (F1: 0.765) with a
0.05 (5 F1 point) lead over the Rocchio+EM baseline. For
the FQC data set, the PPUL:LM+LR approach is the best,
with an F1 of 0.809, outperforming Rocchio+EM by 0.02.
We note that the best PPUL variant for either data set pro-
vides a reasonable balance of precision and recall as shown
by the superior F1 performance: while the approach favours
recall, over half the suggested positives are correct.

This may be important for real-world applications, when
the target content corresponds to only a small volume of
data. For these scenarios, it is important to collect as much
data as possible and err on the side of including false posi-
tives (that is, preferring recall over precision). If the preci-
sion is reasonable, we can rely on an analyst to decide on
which data to include in downstream analyses.

Discussion

Our experiments show that the PPUL Framework performs
well in a variety of situations, as represented by the differ-
ent data sets. To see why the approach works, we visualise
the average perplexities for the positive (P ), reliable nega-
tive (RN ), unlabelled (U ) and annotated negative (N ) sets
as box plots in Figure 2 on the Disaster CF10K data set.
Recall that we use perplexity to define these sets, where per-
plexity represents how closely the text in each set matches
the labelled positive set (P ). For this graph, we used 20%
of P to build the language model (with the remaining 80%
added to U , as described in the evaluation section). As Ta-
ble 5 showed that the PPUL:VAE+LR method was best, we
use VAE for the language model here. That is, we use the
VAE that was trained on P to encode text from these sets,
from which the perplexity for that text can be calculated.
This leads to our labels: VAE-P, VAE-N, VAE-U, and VAE-
RN corresponding to P , N , U and RN , respectively.

The box plot shows that, of course, P has the lowest per-
plexity; we are least surprised by this text given that the

model was based on P . Notably, the ground-truth negative
set (N ) has the same perplexity range as our inferred reliable
negative set (RN ), providing some validation that our infer-
ence of the set RN is performing as intended. Finally, the
unlabelled data set (U ) sits between P and N , as expected.
This graph then shows that the sets are indeed delineated in
a way matching our motivations for PPUL.

In Table 8, we present some examples of correctly and
incorrectly classified posts from the FQC case studies, se-
lected to show content including the term “quality”. The
correctly labelled content shows relevant tweets for content
to do with food. The two examples present both a positive
and negative perspective on food quality. The correctly de-
termined non-relevant content also looks reasonable, catch-
ing off-topic content about the textile industry and art. In the
interests of transparency, we also show incorrectly labelled
content. The two examples of incorrectly labelled relevant
content are about jobs in restaurants. This a tricky case since
this is still related to the food industry. One potential way
to address this is to increase the size of RN to better model
non-relevant content. It is difficult to postulate why the last
two examples were incorrectly labelled as non-relevant. We
note that both examples have repeated punctuation which
suggests that perhaps our text preprocessing before machine
learning may need refinements. However, on the whole, the
results in Table 7 were encouraging, with the PPUL:LM+LR
method achieving an F1 of 0.809.

Deployment Sketch In this section, we briefly sketch how
our PPUL framework is being coupled within a larger social
media monitoring system Vizie (Wan and Paris 2014; Wan,
Paris, and Georgakopoulos 2015), which is an analyst-in-
the-loop system. The analyst first curates queries in the tool,
allowing the analyst to group related queries together in a
monitoring activity. For example, all variants of the honey
queries (HFQ data set) were grouped in the same activity.

The Vizie system provides feedback to the analyst via
dashboard on the kind of data that would be retrieved from
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Test tweets from FQC Gold label PPUL

Correctly Labelled

The food stuff is my favorite because it’s usually super high quality stuff id
normally not buy

RELEVANT RELEVANT

ordered food home delivery.... best example for downgrading quality of food....
even street side food is much better than this.... this is happening twice....

RELEVANT RELEVANT

textile producers from generations, is drawing deeply on new technologies to
produce sturdy and high quality textiles. Read More: #textiles #technology
#fabrics #producers #obradors #highquality #weaves #looms #traditional #tech

NON-RELEVANT NON-RELEVANT

Me: I’m really tired ?? Also me: I have to stay up and bust my ass to produce
high quality art to try and impress people who don’t/won’t like me

NON-RELEVANT NON-RELEVANT

Incorrectly Labelled

APD’s flagship fishing vessel Markit8 got into some quality lingcod today
down on the Lost Coast. Come in this week and enjoy the freshest Fish and
Chips and Fish Sandwiches in town!! Help...

NON-RELEVANT RELEVANT

This thread.... I’ve seen this happen over and over. The average consumer in the
grocery store knows nothing of quality, and because they fall for cosmetics and
marketing over quality we are all stuck with horrible produce.

NON-RELEVANT RELEVANT

Flexible Hours - Chefs: Are you a talented cook who is as passionate about
providing high quality food as we are about providing high quality care? Do
you love cooking for people? Looking for flexible hours and to work?...

RELEVANT NON-RELEVANT

JOB: Fort Lauderdale FL USA - Restaurant GM Restaurant Assistant GM
Restaurant Manager - Ensure a high q: Ensure a high quality of ingredients and
food preparation Create and adjust staff schedules to Ability .. #JOBS #POM-
PANO BEACH FLORIDA

RELEVANT NON-RELEVANT

Table 8: Examples of tweets correctly and incorrectly classified by PPUL from the FQC data set.

social media platforms given his/her queries. This dashboard
analyses a real-time sample of data collected by the query,
generates lists of top hashtags and keywords, provides a
topic clustering of salient content and shows links to match-
ing pages in Wikipedia and Wiktionary for the query. The
aim of this dashboard is to show content that indicates if the
query is ambiguous and needs to be refined further.

As the system is designed to support constant monitoring
of data collection quality, the analyst can activate the PPUL
relevance filter if the manual rules look like they have poor
coverage. The rules specify the positive set, and PPUL is
triggered using cloud-based computing resources. The saved
model file is then used to create the social media relevance
filtering service. Vizie is built using the streaming platform
framework Kafka11 to manage data queue processing, the
classifier is set up as a data consumer on the pipeline for
content collected via the queries. Notably, the analyst only
triggers this capability per monitoring activity as needed.

Future Work Currently, Vizie does not provide any option
to iteratively gauge if the PPUL filter is performing as per the
user’s satisfaction. We are currently designing a workflow
management system to help the analyst manage the process

11https://kafka.apache.org/

of classifier refinement through either retraining with anno-
tated data or further refinement of rule sets.

For clarity and simplicity, we introduced and demon-
strated the effectiveness of PPUL against state-of-the-art
baselines using two instances of this framework that rely on
a logistic regression classifier. We can use any text classifi-
cation method in practice, and our current deployment uses a
CNN text classifier (Kim 2014). There are further variants of
the PPUL framework that should improve performance. For
example, ensemble methods for neural network text classifi-
cation have been shown to be an effective method in boost-
ing performance. Similarly, variants of PU Learning can be
subtly different in their focus, differing in whether to remove
reliable positives from U or just select an RN set (as we do).
Combined approaches may be worth investigating.12

Finally, recent work in developing neural network lan-
guage models (for example, BERT (Devlin et al. 2018),
ELMo (Peters et al. 2018) and ULMFit (Howard and Ruder
2018)) may further boost performance. Of these, BERT has
been demonstrated to be the best on a suite of NLP tasks
(Devlin et al. 2018). However, upon a preliminary investi-
gation, we note that the default BERT encoder does not pro-
duce probability estimates of the input text, making it unsuit-

12We thank anonymous reviewer R3 for this suggestion.
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Figure 2: Boxplots showing the perplexity distributions pro-
duced by VAE on Disaster CF10K over (with 20% of
positive samples for training). X-axis represents four sam-
ple types; positive (VAE-P), negative (VAE-N), unlabelled
(VAE-U) and reliable negative (VAE-RN) samples, and Y-
axis represents their perplexity scores.

able for calculating perplexity without some modification.13

Furthermore, our goal in this paper is to demonstrate the util-
ity of the PPUL framework, in which one can substitute dif-
ferent language modelling methods. For these reasons, we
leave an exploration of models like BERT to future work.

Related Work

Relevant Tweet Identification: Keyword matching has
been widely applied to relevant tweet identification (Bro-
niatowski, Paul, and Dredze 2013; Bommannavar, Lin, and
Rajaraman 2016). While simple, this approach is far from
being perfect for the task (Maynard and Funk 2012; Kim,
Wan, and Paris 2016). For this reason, some previous work
has attempted to build traditional classifiers for various top-
ics, formulated as a binary text classification task, e.g., tele-
vision shows (Erdmann et al. 2013), cyberbullying (Xu et al.
2012), news category (Krestel et al. 2015), disaster (Stowe
et al. 2016) and sentiment (Zhang and Lan 2016). It has
been shown that a machine learning classifier identifies more
relevant tweets than keyword matching pertaining to a par-
ticular event or topic (Neubig, Mori, and Mizukami 2013;
To et al. 2017). However, previous studies used a naive pro-
cess to select negative samples: a set of randomly selected
tweets or a set of randomly selected tweets that do not match
keywords; these may be subject to covariate shifts as indi-
cated by (Li, Liu, and Ng 2010).
PU learning in NLP: PU learning has been studied in the
context of natural language processing (NLP) (Sriphaew,

13See comments by BERT contributors on the topic: https://
github.com/google-research/bert/issues/35

Takamura, and Okumura 2009; Delort, Arunasalam, and
Paris 2011; Shen, Bunescu, and Mihalcea 2012). PU learn-
ing has been used recently for various tasks, such as:
identifying keyphrases from online documents (Sterckx et
al. 2016), important sentences in news (Yang, Bao, and
Nenkova 2017), sentiment-bearing words from a sentiment
lexicon ontology (Wang, Zhang, and Liu 2017), hazardous
product reviews (Bhat and Culotta 2017), the detection of
spam reviews (Ren, Ji, and Zhang 2014), and the detec-
tion of relevant biomedical literature (Li and Liu 2003;
Li, Liu, and Ng 2010). To our knowledge, we are the first to
suggest PU Learning, particularly using perplexity, for so-
cial media relevance filtering.
VAE in NLP: Our use of VAE draws on prior bag-of-words
VAE models that were proposed for modelling text and doc-
uments (Mnih and Gregor 2014). We use the approach by
(Miao and Blunsom 2016) to model the positive class. Here
we outline other related VAE approaches for text modelling.

Piecewise constant distribution is proposed as a prior in
VAE instead of Gaussian to represent complex latent vari-
ables, and this VAE model yields lowest perplexity on the
document modelling task (Serban et al. 2017). These gen-
erative models are also applied to supervised question an-
swering and dialogue modelling. Recurrent neural network
(RNN)-based VAE was proposed to incorporate distributed
representations of entire sentences for the tasks of lan-
guage modelling and imputing missing words (Bowman et
al. 2016). Hybrid convolutional-RNN VAE was introduced
for the tasks of generating characters and tweets (Semeniuta,
Severyn, and Barth 2017). This hybrid VAE encodes long
texts better than RNN VAE for character-level generation,
and it generates much more diverse tweet samples compared
to RNN VAE. Unlike traditional or vanilla deep generative
models, VAE produces diverse and well-formed text sam-
ples from the prior over latent representations.

Conclusions

We introduced the Perplexity Positive-Unlabelled Learning
(PPUL) framework as a means to perform social media rel-
evance filtering, a task well suited for PPUL. We demon-
strated how perplexity can be used to identify candidate ex-
amples of the negative class, using both a statistical language
modelling approach and a Variational Autoencoder. Both
methods, when coupled with a logistic regression classifier,
generally outperformed strong PU Learning baselines. We
demonstrated this on a variety of data sets. In each, PPUL
attains state-of-the-art performance and is effective when the
amount of positive annotated data is small, working for both
event-triggered and topic-triggered social media content.
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