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Abstract

Researchers construct models of social media users to under-
stand human behavior and deliver improved digital services.
Such models use conceptual categories arranged in a taxon-
omy to classify unstructured user text data. In many contexts,
useful taxonomies can be defined via the incorporation of
qualitative findings, a mixed-methods approach that offers the
ability to create qualitatively-informed user models. But op-
erationalizing taxonomies from the themes described in qual-
itative work is non-trivial and has received little explicit fo-
cus. We propose a process and explore challenges bridging
qualitative themes to user models, for both operationalization
of themes to taxonomies and the use of these taxonomies in
constructing classification models. For classification of new
data, we compare common keyword-based approaches to ma-
chine learning models. We demonstrate our process through
an example in the health domain, constructing two user mod-
els tracing cancer patient experience over time in an online
health community. We identify patterns in the model outputs
for describing the longitudinal experience of cancer patients
and reflect on the use of this process in future research.

1 Introduction

Social media data offers the promise of human behavioral
insight that is temporally linked and captured contempo-
raneously with that behavior (Olteanu, Varol, and Kici-
man 2017). While much of this data is unstructured, meth-
ods for identifying patterns—such as supervised machine
learning—are increasingly being used to extract structure for
further analysis (Kuksenok et al. 2012). Developing compu-
tational models to do this data extraction requires defining
a taxonomy: the explicit structure to extract from the un-
derlying social media data. For example, to identify targets
of online hate, Salminen et al. defined a complex taxonomy
capturing the nuances of hate speech (2018). Researchers
use taxonomies that are created by experts, derived unsu-
pervised from the data, or adapted from prior work. In this
paper, we create taxonomies directly from themes identified
in qualitative research.

The incorporation of qualitative research into user model-
ing is beneficial because mixed methods enable researchers
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to triangulate their understandings, refine theory, and make
use of the strengths of both qualitative and quantitative
methods (Shah and Corley 2006). However, the themes and
implications described in qualitative work cannot be taken
“as is” as a taxonomy. Even when qualitative themes have
an appropriate level of granularity for the research ques-
tion at hand (Zhang, Culbertson, and Paritosh 2017), an ex-
plicit mapping of themes to divisions in the data must be
constructed to derive quantitative models. In this paper, we
focus on the problem of bridging existing qualitative work
to computational user models built from social media text
data. We consider bridging as a two-stage process involving
(1) operationalization of qualitative themes into a taxonomy,
and (2) classification of the data based on that taxonomy.
This process has received little explicit focus in prior re-
search; we argue that developing an operationalization pro-
cess for qualitative themes can better enable the incorpora-
tion of qualitative insights into user model taxonomies.

We implement an operationalization method for identi-
fying taxonomic boundaries for two qualitative frameworks
in the cancer domain, identifying critical challenges in this
process. These taxonomies seek to support modeling based
on user-generated text. Two common approaches to this
are identifying keywords that signify inclusion in a partic-
ular taxonomic category versus supervised machine learn-
ing based on human annotation of text into the taxonomic
categories. We conduct empirical comparisons of these two
approaches for classification of categories in the derived tax-
onomies.

Our present study is motivated by research questions re-
lated to cancer patients’ labor and their use of online health
communities (OHCs). Substantial sources of social media
data capture the experiences of cancer patients, but no ex-
isting operationalizations bridge these data to the exten-
sive qualitative work describing the experiences and needs
of cancer patients. By bridging existing qualitative health
theories into computational models of patients” OHC use,
these models can inform the delivery of digital services (Ja-
cobs, Clawson, and Mynatt 2014). From qualitative frame-
works developed by Jacobs, Clawson, and Mynatt (2016)
and Hayes et al. (2008), we iteratively develop taxonomies
for classifying cancer patient responsibilities and temporal



cancer phases. We use supervised machine learning to con-
struct computational models that trace cancer patients’ ex-
periences through their OHC posts.

The contributions of this work are (1) an articulation of
a bridging process between qualitative themes and quantita-
tive models, (2) a comparison of two classification methods
for taxonomies—supervised machine learning and keyword-
based classifiers, and (3) the extension of two existing qual-
itative frameworks to a novel social media context. Our pro-
posed bridging process builds towards researcher triangula-
tion of findings across methodological approaches to build
more robust user models. We describe our application of the
two stages of the bridging process in the Operationalization
and Classification sections, then reflect on the two models’
validity and predictions in the Model Analysis section. In the
Discussion, we identify implications for future researchers
using this method.

2 Related Work

Social media data contains traces of human activity that,
if structured, can reveal human behavior (Olteanu, Varol,
and Kiciman 2017; Kulkarni et al. 2018). The unstruc-
tured text of social media data constitutes a trace of hu-
man behavior, and those texts can inform us about humans’
behaviors and beliefs (Pennebaker, Mehl, and Niederhof-
fer 2003). Social media text has been used to infer ide-
ology (Zhang and Counts 2015), personality (Kulkarni et
al. 2018), nutrition (De Choudhury, Sharma, and Kiciman
2016), and other aspects of human experience. Behavioral
analysis via social media is often used to explore human be-
havior during periods of change like the birth of a child or
a health crisis, as we do here (De Choudhury et al. 2013;
Paul, White, and Horvitz 2015). In the next two sections, we
discuss background on taxonomies and classification.

Operationalization of Taxonomies

To create user models, researchers define taxonomic cate-
gories of behavior from three non-exclusive sources: unsu-
pervised machine learning, experts, and qualitative inquiry.
Unsupervised machine learning defines categories and the
boundaries between them directly from patterns in the data,
but it can be hard to validate automatically-inferred patterns
or to determine their relevance to the research question at
hand (Sachdeva, Kumaraguru, and De Choudhury 2016).
But, questions can be asked and answered using the result-
ing taxonomies without strictly adhering to prior expecta-
tions (Concannon et al. 2018).

Expert-derived taxonomies are built from close collabo-
ration with domain experts (Liu, Weitzman, and Chunara
2017; Kiciman, Counts, and Gasser 2018), a manual read-
ing of existing literature in the target domain (Paul, White,
and Horvitz 2015; Zhang et al. 2017), or from codebooks of
keywords uncovered from “expert” Internet sources (Huang
et al. 2017). While these taxonomies gain validity from their
basis in expert knowledge, this top-down approach may limit
the ability to detect novel categories in the data and in many
cases the relevant domain expert may not exist.

An alternative is to operationalize a taxonomy from qual-
itative work, which is the approach we explore. Zhang, Cul-
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bertson, and Paritosh aimed to develop a taxonomy from
prior work, but found that existing work was too narrow,
instead iteratively developing their own taxonomy with ex-
perts (2017). Singer et al. used hand-coded survey responses
to construct a taxonomy and validated it with an additional
survey (2017). While it is ideal for quantitative researchers
to collaborate closely with qualitative ones on the same
research questions, requiring that qualitative and quantita-
tive experts work together synchronously limits the commu-
nity’s ability to learn from the existing body of qualitative
work (Morgan 1998). By articulating a process of taxonomy
operationalization from qualitative themes, user models ben-
efit from existing bottom-up work.

Classification of Social Media Data

Once taxonomies are defined, two primary approaches are
used to classify available text data: the use of specific word
patterns by lexical analysis of texts through the discovery of
words closely related to a desired category (Fast, Chen, and
Bernstein 2016) (i.e. keyword-based approaches) and super-
vised machine learning (ML).

Keyword-based approaches are appealing because they
are interpretable and require no human annotation of data.
These approaches often involve soliciting keywords from
an expert (Kiciman, Counts, and Gasser 2018). The line
between building a taxonomy from “constructs of inter-
est” (Fast, Chen, and Bernstein 2016) and selecting key-
words to use in that taxonomy is often blurred e.g. in (Geiger
and Halfaker 2017). Such approaches run the risk of missing
important variants of the phenomena under study (Salminen
etal. 2018) and may need additional human validation (Birn-
baum et al. 2017).

In contrast, supervised ML can result in higher precision
than keyword lists on social media data (Birnbaum et al.
2017) and find patterns that are more generalizable and ro-
bust (Zhang, Culbertson, and Paritosh 2017). We compare
supervised ML to keyword-based approaches to further ar-
ticulate the trade-offs of interpretability versus robustness.

3 Study Design

We investigate the proposed bridging process in the context
of cancer patients’ OHC posts. In this section, we provide
the relevant qualitative background (“Cancer patients and
OHCs”), describe the OHC (“CaringBridge research collab-
orative”), and discuss the selected data (“Study data selec-
tion”). Subsequent sections describe the operationalization,
classification, and finally analysis of the model outputs, with
each section addressing the methods used and our results.

Cancer patients and OHCs

Online health communities (OHCs) are used by patients and
caregivers to seek social support (Gui et al. 2017). We focus
on patient use of CaringBridge, an online health community.
Responding to the call for catalyzing social support by un-
derstanding and enhancing OHCs (Skeels et al. 2010), we
use unstructured text of patient posts to model their use of
CaringBridge. In contrast, most prior user modeling health



research has relied primarily on structured health informa-
tion like self-reported condition (Tamersoy, De Choudhury,
and Chau 2015). In the next sections, we discuss the theoret-
ical foundations from which we operationalize taxonomies.

Phases and transitions The concept of cancer phases are
used by patients to self-characterize their needs (Eschler,
Dehlawi, and Pratt 2015), in medical research to organize
programs of care (O’Brien et al. 2014), and as the basis for
prior HCI research (Jacobs, Clawson, and Mynatt 2014). In
this work, we adopt the phase model of cancer articulated
by Hayes et al. (2008) and adapted by Jacobs, Clawson, and
Mynatt (2016) to describe commonalities in patients’ expe-
riences of their cancer journeys.

While we are the first to use Hayes et al.’s phases in
quantitative modeling, Wen and Rose used an earlier iter-
ation of this phase model to identify cancer disease trajec-
tories, although their emphasis is on phase boundary identi-
fication via automatic event extraction (2012). Liu, Weitz-
man, and Chunara utilized supervised ML of social me-
dia posts to identify drinking behavior through a series of
discrete stages (2017). Although conceptually similar to
phases, their stage taxonomy was developed with the in-
put of domain experts. We utilize a similar modeling ap-
proach and follow their lead in the use of active learning.
Other established stage/phase models, like the widely used
transtheoretical model (TTM) of health behavior changes,
are used as the basis for taxonomies that are tweaked by
experts (MacLean et al. 2015). The TTM has been refined
through both theory-building and empirical validation over
many years (Prochaska and Velicer 1997); in contrast, the
Hayes et al. phase model is based directly on qualitative
work and has not yet been explored in diverse contexts. Our
operationalization contributes to a broader effort of theoret-
ical refinement (Adcock and Collier 2001). On the quan-
titative side, concepts similar to phases have been opera-
tionalized via discrete observable keyword-patterns e.g. for
the identification of recovery events (Chancellor, Mitra, and
De Choudhury 2016).

Cancer journey framework Jacobs, Clawson, and My-
natt articulated a cancer journey framework (CJF) from
qualitative interviews with cancer patients (2016). The CJF
is organized into three dimensions: responsibilities, chal-
lenges, and how the cancer journey influenced patients’
daily life. We focus only on the responsibilities, defined by
Jacobs, Clawson, and Mynatt as “the multiple tasks that are
placed on patients during each of the cancer journey phases”,
referring to the phases described by Hayes et al. (2008).
Qualitative exploration of the dataset indicated that the other
two dimensions were seldom visible in the details of pa-
tients’ posts. The responsibilities and their corresponding
phase assignments are listed in Table 1, along with abbre-
viated responsibility codes used where space is limited. Re-
sponsibilities are purposeful and goal-oriented tasks that are
required of the patient because of a cancer diagnosis; for ex-
ample, one task associated with the Preparation responsibil-
ity would be getting a wig fitting in advance of anticipated
hair-loss due to treatment.

CaringBridge is designed to support patients’ communi-
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cation with their extended support networks (Massimi, Di-
mond, and Le Dantec 2012). Therefore, we expected that
patients would discuss their responsibilities with their Car-
ingBridge support network. While there is a tension between
managing self-presentation and “sharing information related
to specific needs and desires” (Newman et al. 2011), we
treat patient’s discussions of their responsibilities on Caring-
Bridge as veridical representations (Star and Strauss 1999)
of their real-world responsibilities. In particular, we assume
patients may omit responsibilities from discussion on Car-
ingBridge but will not fabricate them, such that our compu-
tational models can be taken as a high-precision view of can-
cer patients’ responsibilities. By classifying these responsi-
bilities on CaringBridge, we aim to conceptualize patients’
communication of their labor.

We selected the CJF and the Hayes et al. phase model for
use in this bridging process based on our broader research
question, which was related to understanding patient labor
needs over time so that we can design more effective, per-
sonalized online interventions to meet or reduce those needs.
We offer no guidance on the identification and selection of
qualitative frameworks for this bridging process other than
alignment with the research question of interest; this is an
important theoretical problem that deserves additional atten-
tion in future work. We acknowledge a broader tension in
qualitative research regarding the generalizability of qualita-
tive work; while not all qualitative work is intended to gener-
alize, we select frameworks that comprise “in-depth analysis
of specific, local phenomena, with the intention of general-
izing to other sites and other people” (Muller et al. 2016).
Our bridging process builds on that intention.

End-of-life The CJF was developed through retrospective
patient interviews. Thus, one limitation is that it necessar-
ily omits cancer journeys that conclude with the death of
the patient. OHCs have a role to play in end-of-life situ-
ations, as the use of technology to aide in communication
and support coordination is important to patients’ quality of
life during hospice (Heyland et al. 2006). Online hospice
communities have been studied for their role facilitating so-
cial support during hospice care (Buis 2008), but OHCs like
CaringBridge have not been specifically investigated in this
context. While most studies of technology use at end-of-
life have relied on retrospective interviews (Ferguson et al.
2014), CaringBridge provides an opportunity to explore the
use of technology at end-of-life contemporaneous with the
dying experience. As communication and decision-making
labor passes from the patient to their caregivers near death
(Prendergast and Puntillo 2002), we expect that many as-
pects cannot be captured via the patient’s own writing; how-
ever, these data remain a unique opportunity to analyze re-
sponsibilities articulated during the end-of-life phase.

CaringBridge research collaborative

This work was conducted during a research collaboration be-
tween CaringBridge (CB) and the University of Minnesota.
CB is a global, nonprofit social network dedicated to help-
ing family and friends communicate with and support loved
ones during a health journey.



Code Responsibility Phase
CO  Communicating the disease to others ~ PT
IF Information filtering and organization PT
CD  Clinical decisions PT
PR Preparation PT
ST  Symptom tracking T
CS  Coordinating support T
SM  Sharing medical information T
CP  Compliance T
MT  Managing clinical transition T
FM  Financial management T
CM  Continued monitoring NED
GB  Giving back to the community NED
BC  Health behavior changes NED

Table 1: Patient responsibilities in the CJF and the phase
within which that responsibility was organized. Phase is ei-
ther pretreatment (PT), treatment (T), or no evidence of dis-
ease (NED).

Platform description CaringBridge.org offers individual
sites for users—free, personal, protected websites for pa-
tients and caregivers to share health updates and gather their
community’s support. Each site prominently features a jour-
nal, which is a collection of multiple health updates by or
about a patient. Updates are comprised of text and are times-
tamped with a creation date and time. This terminology re-
flects that used by Ma et al. (2017).

Data description and ethical considerations The com-
plete dataset used for this analysis includes de-identified
information from 588,210 CaringBridge sites created be-
tween June 1, 2005 and June 3, 2016. The site data were
acquired through collaboration with CB leadership in ac-
cordance with CB’s Privacy Policy & Terms of Use Agree-
ment. This study was reviewed and deemed exempt from
further IRB review by the University of Minnesota Institu-
tional Review Board. We acknowledge the tension in HCI
between open data dissemination (Hornbzk et al. 2014) and
the ethical necessity to protect participants’ rights and pri-
vacy (Bruckman et al. 2017). As CB data are highly sensi-
tive, we opt not to publicly release the dataset used for anal-
ysis in this paper or to use crowdsourcing for annotation. In
compromise between replicable science and the ethical pro-
tection of participants’ privacy, we welcome inquiries about
the dataset by contacting the authors. We do release our tax-
onomy definitions and analysis code.!

Study data selection

Most sites in the CB dataset are not relevant to this study, as
the CJF and phase model articulate themes only for cancer
patients. We include only sites that self-reported cancer as
the health condition category at the time of site creation. For
ethical reasons, we further omit sites deleted by the site au-
thors. To account for shifts in the design and demographics
of CaringBridge over time, we include only sites created in

! github.com/levon003/icwsm- cancer-journeys
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2009 or later. We focus on completed sites, ones with their fi-
nal journal updates made before April 1st, 2016 (two months
before the end of the dataset’s span). We analyze only sites
active enough to capture part of the patient’s cancer journey,
which we define as sites with at least five journal updates
spanning at least one month.

Finally, as sites may have multiple authors and we are
only interested in sites written by patients themselves, we
exclude sites in which fewer than 95% of the updates were
authored by the patient. We identify updates as patient-
authored or not using a binary Vowpal Wabbit logistic re-
gression classifier with L2 regularization (Langford, Li,
and Strehl 2007). Hashed unigram and bigram bag-of-
words features were used. During data exploration, two re-
searchers annotated updates as evidently patient-authored or
not. Agreement was generally high (Cohen’s x = 0.72), dis-
agreements primarily arising from very short updates. To
improve classifier accuracy and address biases potentially
introduced via non-random sampling of updates for annota-
tion, we conducted several rounds of uncertainty sampling,
resulting in a training set of 1,035 updates. This classifier
achieved an accuracy of 92.5% on a held-out validation set
of 258 updates, which we determined to be sufficient for
the accurate identification of sites primarily authored by pa-
tients. During random sampling of sites for the human an-
notation described subsequently, we observed no sites that
were not primarily patient-authored. After the exclusion of
sites based on the authorship classifier, we selected 4,946
sites for subsequent analysis (described in Table 2) contain-
ing 158,597 updates.

Journal =~ Median: 22 updates
Updates M=32.1; SD=43.7 [
Site Median: 1017 visits
Visits:  M=2099.2; SD=41369 M
Survival Median: 8.2 months
Time  M=12.9; SD=13.3 [
Breast 2752 (55.6%) Leukemia 209 (4.2%)
Lymphoma 597 (12.1%) Ovarian 169 (3.4%)
Other 380 (7.7%) Lung 168 (3.4%)
Not Specified 257 (5.2%) Myeloma 120 (2.4%)
Colorectal 225 (4.5%) Brain 69 (1.4%)

Table 2: Descriptive info about the 4,946 selected CB sites.
Survival time is the time elapsed between the first and last
journal update on a site.

4 Operationalization
Operationalization Methods

We define operationalization as the construction of a struc-
tured taxonomy from description of themes in existing qual-
itative theory. Following Zhang et al. (2018), we suggest
that not all themes may be useful in the target social me-
dia context; rather, the operationalization process creates
a “shared vocabulary” that identifies conceptually coherent
categories. Echoing Figueiredo et al. (2017), the qualitative



Phase Occurrence  Disagreement K
PT 7.4% 5.5% 091
T 69.7% 74% 0.94
EOL 1.9% 0.2% —
NED 6.4% 3.6% 0.95
Overall 99.62% 10.2% 0.93

Table 3: Annotated phase occurrence proportions and IRR.
Disagreement is the percentage of a phase’s occurrence in
multi-annotated updates with disagreement. Cohen’s « is re-
ported for two coders’ annotations of 31 sites containing 619
updates; none of these sites contained EOL updates. Overall
stats describe updates annotated with any phase.

framework is a lens— a “conceptual framework to recog-
nize and compare”—to understand the relationship between
patients’ writing on CB and the taxonomic categories.

Tangibly, operationalization involves a mapping between
indicators in the data and particular qualitative themes.
These mappings define the categories in the taxonomy. We
operationalize two taxonomies from the phase and respon-
sibility frameworks discussed in Section 3. In a social me-
dia context, data indicators are units of text that relate to
the qualitative framework. For example, we defined a par-
ticular responsibility to be present in an update if the au-
thor explicitly acknowledges having done a related task or
having a need for a related task; a patient’s description of
a task indicates the presence of a responsibility. The tax-
onomy codebook describes which task descriptions indicate
particular categories. We focus on indicators of responsibil-
ities that require human but not specific-domain expertise to
identify (Zhang et al. 2018); in particular, it’s not at all clear
what if any domain expertise could exist for responsibilities
given that the indicators are non-medical.

For both phases and responsibilities, we created initial
category descriptions directly from the theme descriptions
in the corresponding qualitative work. We conducted multi-
ple rounds of annotation followed by discussion to resolve
disagreements, resulting in updates to the taxonomy in the
form of examples and guidance for annotators. Such iterative
processes are widely used in codebook development (Zhang
et al. 2017; Geiger and Halfaker 2017; Adcock and Collier
2001). Annotators could assign as many responsibility labels
to an update as evidence indicated, while phase labels were
initially treated as mutually exclusive. Four researchers par-
ticipated in codebook development and annotation, all famil-
iar with CaringBridge data but not medically trained. Two of
these researchers functioned as primary annotators, together
annotating the majority of labeled data. Each round of an-
notation consisted of the primary annotators independently
labeling 20 randomly sampled sites and computing Cohen’s
K to assess the level of inter-rater reliability (IRR). After tax-
onomies were defined, we annotated additional sites to pro-
vide data for the training of classification models.
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Responsibility  Occurrence  Disagreement K
CO 1.3% 23% 0.00
IF 7.5% 17.0% 0.06
CD 3.4% 6.1% 0.21
PR 14.4% 26.2% 0.22
ST 20.4% 32.9% 0.15
CS 9.2% 12.9% 0.43
SM 52.4% 16.7% 0.57
CP 46.6% 26.8% 0.45
MT 12.3% 229% 0.13
FM 1.8% 2.6% 042
CM 5.0% 74% 0.32
GB 2.6% 4.8% 0.42
BC 2.6% 44% 0.44
Overall 96.19% 85.2% 0.10

Table 4: Annotated responsibility occurrence proportions
and IRR. Disagreement is the percentage of a responsibil-
ity’s occurrence in multi-annotated updates with annotator
disagreement. Cohen’s x is reported for two coders’ an-
notations of 20 sites containing 471 updates; the six em-
phasized responsibilities are used for future classification.
Overall stats describe annotated updates containing at least
one responsibility, where « evaluates agreement with the re-
quirement that both annotators agree on all responsibilities
for that journal.

Operationalization Results

We identified two challenges common to both phase
and responsibility operationalization: interrogating thematic
boundaries and mapping the conceptual to the observable.

Interrogating thematic boundaries We experienced
challenges developing distinct boundaries between themes
from the indicators in the text. For the phase taxonomy, we
began our exploration using all five phases described by
Hayes et al. (2008): screening and diagnosis, information
seeking, acute care and treatment, no evidence of disease,
and chronic care and disease management. We observed that
“screening and diagnosis” and “information seeking” were
intertwined; updates in the first few weeks of a site described
experiences with no clear correspondence with exactly one
of the phase themes. We merged these themes into a single
“pretreatment” phase that encapsulates the qualitative de-
scriptions of both, constructing a taxonomy with four cat-
egories: pretreatment (PT), treatment (T), no evidence of
disease (NED), and chronic care and disease management
(EOL). Hayes et al. included discussion of the valid tran-
sitions between phases (depicted in Figure 1 as arrows),
which we found to cohere with the data patterns we ob-
served i.e. we observed no transitions other than those indi-
cated. To complete the phase taxonomy, additional rounds of
annotation focused on clarifying the most relevant thematic
boundaries—PT/T and T/NED—and adding examples to the
annotation guidance e.g. identifying medical port insertion
as a common transition from PT to T.

For the responsibility taxonomy, we observed two distinct



types of indicators that referred to the CJF’s Support Man-
agement responsibility. The patients’ literal descriptions of
coordinating support blended with the sharing of medical
information by authoring the CB update. We split Support
Management into two new responsibilities—Coordinating
Support and Sharing Medical Info—each defined from sub-
sets of the CJF’s description of Support Management. This
split enabled us to disentangle acknowledgements by the pa-
tient of support coordination apart from the act of writing
updates on CB. Pooling could be used for later analyses,
but we embraced the suggestive split in the data. With 13
responsibilities, we had many more boundaries to negotiate
and discuss, finding that a single task indicator may corre-
spond with multiple responsibilities in an ambiguous way.

Mapping conceptual to observable In mapping concep-
tual themes to observable units of data, some indicators were
ambiguously linked to one or more categories. For the phase
taxonomy, we observed updates that described transitions
between phases or for which phase could not be confidently
identified. To address this challenge, we allowed annotators
to select up to two phases for a single update and introduced
an “Unknown” checkbox to the annotation interface to indi-
cate uncertainty.

For the responsibility taxonomy, we observed that many
responsibilities were ambiguous within the data, consis-
tently finding low IRR despite multiple rounds of iteration
and discussion. In the final round of iteration, we adapted
a method described by Schaekermann et al. (2018) to con-
duct a more detailed disagreement discussion process for the
seven responsibilities for which we found IRR to be the low-
est. This process consisted of (i) an evidence-finding phase
in which an annotator was asked to highlight specific textual
evidence for a particular responsibility’s presence in an up-
date, followed by (ii) a reconsideration phase in which anno-
tators who had not indicated the presence of that responsibil-
ity were asked to consider the presence of that responsibility
in light of the textual evidence provided by another anno-
tator. 25.7% of 152 updates reconsidered in this discussion
process resulted in irresolvable disagreement i.e. the primary
annotators continued to disagree. Furthermore, after subse-
quent annotation of 20 sites to compute IRR (Table 4), three
of the seven responsibilities involved in the disagreement
discussion process achieved lower agreement compared to
scores on a prior annotation set. The high amount of irre-
solvable disagreement indicates high ambiguity in those re-
sponsibility’s themes. We return to this point in Section 6.

Complete taxonomies For phases, we defined taxonomic
categories over two rounds of iteration, finding high anno-
tator agreement as shown in Table 3. Patterns between the
annotated phases are shown in Figure 1. For responsibili-
ties, we defined taxonomic categories over five rounds of
iteration. Table 4 shows low annotator agreement for many
responsibilities. Low-agreement responsibilities like Prepa-
ration may not be useful in describing patient behavior in a
social media context without further qualitative elucidation
of those responsibilities; as it stands, the mapping from the
conceptual to the observable is too ambiguous. As we turn to
classification, we drop the lowest-agreement responsibilities
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Sampling: Random Uncertainty Death
S U S U |S U
Cancer Phases 109 2791 | 28 278 63 3852
Responsibilities 82 1891 | 23 34 — —

Table 5: Human annotation counts in terms of number of
sites (S) and number of journal updates (U).

156.2% 25% 143.3%
PT F3.0% T F27.1%
\]77.6% 10.6%% 97.3%
0.7%
10.5% e 10.0% 80.4%
EOL |57 [ NED [00%
F 27.1%le55"00, F 42.9%

Figure 1: Phase transition probabilities based on human-
annotation. Each phase indicates the percentage of sites with
an initial (I) and final (F) update in this phase.

and focus on the six responsibilities with Cohen’s x > 0.4.
This division is arbitrary, but reflects commonly used guide-
lines indicating x > 0.4 as moderate agreement (Landis and
Koch 1977).

Total human annotations of sites and updates following
the final iteration of both taxonomies are shown in Table
5. During random sampling, we observed only a single site
that ended in the death of the patient, which ran counter to
a finding from Ma et al. that 37% of cancer sites on CB do
so (2017). We speculated that patient-centered narratives are
less likely to provide clear indicators of patient death. To
investigate end-of-life sites more carefully, we identified a
high-precision filter to identify candidate sites that may con-
tain such updates. We filtered to 63 sites using the conjunc-
tion of predictions from a death classifier developed by Ma
etal. (2017), akeyword list?, and sites that ended with a non-
patient-authored update. After annotation of these sites for
phases, we determined that 82.5% of them contained end-
of-life updates.

5 Classification
Classification Methods

Using the complete taxonomies operationalized from quali-
tative work, we classify CB updates by taxonomic category.
We train supervised ML models from the data annotated dur-
ing the development of the taxonomies. We compare the ML
classifiers to keyword classifiers that assign a category label
to an update if it contains one of the words on a keyword list
defined for that category.

ML classifier We formulate both phase and responsibil-
ity identification as multilabel classification problems. For

2Keywords used: hospice, funeral, death, passed away, obituary,
wake, commemoration



phases, the prediction target is a 4x1 vector of labels cor-
responding to the four phases, whereas for responsibilities
the prediction target is a 6x1 vector. To make use of cor-
relations between the classes, we evaluate multilabel mod-
els rather than transforming the problem to independent bi-
nary classification problems (Read et al. 2009). We remove
from consideration all updates with fewer than 50 characters
of text content between the title and body text. All models
were trained using Vowpal Wabbit (Langford, Li, and Strehl
2007). After evaluating several models, we achieved the best
performance with cost-sensitive one-against-all (CSOAA)
regression models, with human annotations converted to
costs in the (0,1) range to be predicted by the regressions.
We use hashed unigram, bigram, and skip bigram text fea-
tures extracted from the title and body text of each journal.
CSOAA is a binary logistic regression model per label with
weighting applied to minimize false positives (Beygelzimer,
Langford, and Zadrozny 2005). Performance could likely be
improved through the use of a state-of-the-art NLP classi-
fication model e.g. (Howard and Ruder 2018) or through
alternative problem formulations e.g. phases as sequences
(MacLean et al. 2015); the models we present here repre-
sent a proof of concept and a reasonable ML baseline against
which the keyword classifiers may be compared. We found
that classification performance was not particularly sensitive
to the choice of ML model among the linear classifiers we
evaluated.

In the phase model, we make use of both annotator un-
certainty and annotator disagreement to increase the cost of
human-assigned phases by 0.2 when ‘Unknown’ is selected
and 0.1 when two annotators disagree on an update. We also
include contextual information from the two prior updates
on the site, adding features from those updates’ text and the
number of seconds elapsed since those updates.

For training and validation, we used human-annotated
journal updates obtained after the final taxonomic iteration.
After training initial models, we utilized uncertainty sam-
pling to identify additional updates for annotation (Table 5).
To improve the phase model, we identified additional sites
by averaging uncertainty metrics across all updates on a
site.> We also selected sites that generated erroneous tags or
erroneous transitions, e.g. an update tagged PT and EOL, or
a transition from NED to PT. For the responsibility model,
we sampled individual journal updates.*

We evaluate the performance of the two classifiers using
means from fifty executions of 20-fold cross validation. To
avoid leaking specific author information into the validation
set, CV folds are generated at the site level, with all an-
notated updates from any specific site appearing in just the
training or the validation set.

Keyword classifier A keyword-based classifier assigns a
class label to an update if it contains one of the words on a

3We used three uncertainty metrics defined by Li and
Guo (2013): entropy, distance to the decision threshold, and maxi-
mum separation margin.

*We used two uncertainty metrics appropriate for multilabel
classification defined by Li and Guo (2013): maximum separation
margin and label cardinality inconsistency.
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keyword list defined for that class. While keyword lists are
constructed in many ways, we invert the problem and ask:
regardless of the keyword selection method, what is the best
performance that can be achieved by an optimally-selected
keyword list? We develop keyword classifiers to reflect two
definitions of “best performance”: maximum precision and
maximum representativeness. Following a common require-
ment that keyword lists have near-perfect precision, we first
identify a keyword list for each class that ensures perfect
precision and the highest possible recall. While identifying
the optimal keyword list is NP-hard, we represent the se-
lection of the keyword list for each class as the maximum
k-cover problem and approximate the optimal lists through
a well-known greedy algorithm® (Feige 1998). In this for-
mulation, for each class label ¢, we identify a set W, of
words appearing only in updates assigned c and a keyword
list containing k& words in W_. covering the maximum num-
ber of updates annotated with c. As keyword lists contain
only words in W, each keyword list ensures 100% preci-
sion but unknown recall. For this evaluation, we allow the
keyword lists’” “words” to contain unigrams or bigrams and
remove English stopwords from consideration. We evaluate
the generalizability of these keyword lists via 10-fold cross
validation.

We build a second set of keyword-based classifiers to rep-
resent situations where keyword lists are constructed from
the words that are most “representative” of each category
and for which perfect precision is not a requirement. We
identify words that are most associated with each phase and
responsibility using frequency-based odds ratio—a measure
used in prior OHC work (MacLean et al. 2015). If f.(w)
is the number of updates assigned class label ¢ that con-
tain word w, then OR(w, ¢) = (fe(w) X fz(w))/(fe(@) x
fz(w)). For each class label, the keyword list contains the
k non-stopword unigrams with the highest odds ratio that
appear in at least 10% of updates assigned that class label.
These lists contain the words that are most representative of
the category relative to the other categories and may better
reflect the possible output of an expert-driven keyword iden-
tification process. We evaluate the generalizability of these
keyword lists by the mean performance over fifty executions
of 10-fold cross validation.

Classification Results

Baseline model results To contextualize the subsequently
presented ML model results, we report two baselines rec-
ommended for multilabel classification problems by Metz
et al. (2012): (1) Subset-Accuracy (Bsa)—a baseline that
predicts the most common multi-label in the dataset, mean-
ing {T} for phases and {SM,CP} for responsibilities; and
(2) F-Measure (Bpy)—a baseline that predicts the set of la-
bels that maximizes F1 score. Results are shown in the final
rows of Table 6. To reflect an interest in correctly identifying
the most-common classes, all mean results in this paper are

>The maximum k-cover problem’s greedy algorithm has an ap-
proximation ratio of 1 — 1/e & 0.632 assuming P # N P, a claim
on which this paper takes no position. Thus, the identified keyword
lists achieve a recall that is at worst 63% of the optimal recall.



Resp. P R Fl | Phase P R F1

CS 0.75 0.83 0.80 | PT 091 0.95 093
SM 093 098 095 | T 096 0.99 097
Cp 090 0.97 0.93 | EOL 0.55 096 0.70
FM 047 092 058 | NED 0.86 0.86 0.86
GB 0.19 0.87 0.68 | — — — —

BC 032 041 034 | — — — —

Mean 0.89 096 0.92 | Mean 0.94 097 0.95
Bgsa 0.70 0.86 0.77 | Bgsa 0.74 0.86 0.79
Brum 0.72 0.99 0.80 | Bpum 0.74 099 0.81

Table 6: ML classifier performance in terms of Precision (P),
Recall (R), and F1 score, along with two baseline measures.

computed as weighted macro averages such that per-class
performance is weighted by the prevalence of that class.

Machine learning model results Table 6 presents the per-
formance of the phase and responsibility ML classifiers.
Both models significantly outperform the baselines. Perfor-
mance is better for the phases than the responsibilities, re-
flecting the challenges described during operationalization.

We analyzed patterns in the predictions generated by the
models. For phases, 7,181 updates (4.7%) are given invalid
phase assignments i.e. a combination of labels represent-
ing a transition not shown in Figure 1. We find a relation-
ship between these erroneous outputs and two primary fac-
tors: 69.2% of the invalidly-labeled updates are either less
than 500 characters or the first journal on a site. Discount-
ing invalidly-labeled updates, 3.2% of sequential updates are
labeled with invalid transitions.

For the responsibility model, we compared the number of
responsibilities predicted present in the update to the num-
ber of responsibilities in the ground truth for that update.
While humans annotated no updates containing all six re-
sponsibilities, 4.2% of updates are predicted to contain all
six responsibilities. These likely-erroneous predictions are
primarily assigned to short updates: 90.4% of updates pre-
dicted to contain all six responsibilities are shorter than 500
characters. The model predicts that a higher proportion of
updates (+4 percentage points on average) contain each re-
sponsibility than the proportions identified by human anno-
tators (Table 4). 7.7% of updates are predicted to contain no
responsibilities, a decrease of 1.59 percentage points com-
pared to the human-annotated updates.

Keyword classifier results Table 7 shows the perfor-
mance of the max-precision keyword classifier for two val-
ues of k. Even when £ = 10, the selected keyword lists
overfit to the human-annotated data and perform worse than
the ML models on held-out sites, demonstrating that these
keyword lists fail to capture the salient information of each
of the classes under consideration. Table 8 shows the perfor-
mance of the maximally-representative keyword classifier.
Note that when & = 100 recall is near-perfect in every cat-
egory, which triggers a corresponding drop in precision and
thus F1 score. Performance is significantly better than the
max-precision keyword lists, at the cost of low precision.
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k=10 k=100

Class Train Test Train Test

Label R FI R F1 \ R FI R F1
CS 19 32 .04 08| .87 93 .14 .16
SM 34 50 30 46| .90 95 73 .81
CP 22 36 20 32(.79 .88 .58 .68
FM 47 64 07 11|95 97 .09 .09
GB 39 56 00 .001|.99 99 .05 .08
BC 30 46 02 02].99 99 .03 .03
PT 08 .15 01 .021] .45 .62 .03 .04
T A3 23 05 09 .49 .66 31 .46
EOL 39 56 21 31|99 .99 26 .31
NED .11 20 .00 .01].52 .69 .03 .04

Table 7: Max-precision keyword list performance in terms
of Recall (R) and F1 score. Precision is 1 on train.

Generalization performance is higher relative to the max-
precision keyword lists. Qualitative investigation of the key-
word lists generated using both approaches reveals sensible
selections. The keywords for the second classifier in partic-
ular seem appropriately representative.

Taken together, these results provide evidence that pre-
dictive models based on operationalizations from qualita-
tive themes perform better using machine-learning-based
approaches rather than keyword lists. However, when gen-
eralization to unseen data is not a concern, high-precision
lists containing relatively few words can be constructed
to achieve high recall, although inconsistent performance
across categories may be challenging to identify. For ex-
ploratory modeling where precision is less important, small
numbers of representative words (as may be revealed during
the qualitative operationalization process) can achieve rea-
sonable results and motivate additional data exploration. The
use of keyword-based methods may also be seen as a trade-
off between interpretability and robustness; the specifics
of the modeling application and the need to communi-
cate the prediction process—e.g. to designers—might moti-
vate a preference for keywords over machine learning mod-
els. Keywords may also be appropriate when stronger as-
sumptions about the text in a particular domain can be
made (O’Connor, Bamman, and Smith 2011).

6 Model Analysis
Model Validation

To explore the expert validity of the phase and responsibil-
ity models, we invited an expert involved in the creation of
the qualitative frameworks used in this paper (an author of
the CJF without any affiliation or conflict of interest with
this paper) to provide feedback on our operationalization.
Across the elements of each taxonomy codebook, the expert
rated the reasonableness of each definition on a 5-point Lik-
ert scale from strongly disagree (-2) to strongly agree (+2).
Overall agreement was high for items in both the responsi-
bility (M=1.74) and phase (M=1.83) codebooks. In the ex-
pert’s qualitative feedback, several comments related to a



k=10 k=100

Class Train Test Train Test
Label P R F1 P R F1 \ F1 Fl1
CS 24 88 37 23 86 36| .26 26
SM 86 98 92 86 .98 92| .93 .93
CP J7 99 87 77 99 87| .87 .87
FM 22 87 35 20 .77 30| .06 .07
GB d6 65 25 12 50 .19 | .08 .08

BC d4 .69 23 .08 42 .13 | .08 .08

PT d2072 021 12 71 20| .13 .14
T 88 92 89 .88 90 .88 | .92 92
EOL .10 .73 .18 .11 72 .18 | .03 .03
NED .06 97 .12 .07 97 .13 ] .11 12

Table 8: Maximally-representative keyword list perfor-
mance in terms of Precision (P), Recall (R) and F1 score.

divergence between what is observed in patient interviews
and what patients self-report on CaringBridge, a gap that we
leave for future work to better understand the motivations of
patient sharing in OHCs.

How do we account for poor inter-annotator agreement
for responsibilities despite high agreement for phases? The
same annotators were involved in both models, which sug-
gests that coder quality is not a primary cause. While anno-
tator domain expertise may be a factor, phase indicators gen-
erally require more medical knowledge to identify than re-
sponsibility indicators. The assessment of the expert that the
operationalizations are reasonable suggests there is no fun-
damental weakness in the iterative operationalization pro-
cess used or the resulting taxonomy. Instead, we hypothesize
that ambiguity in the identification and mapping of indica-
tors to responsibilities is a critical factor. To probe the role
of ambiguity in producing low IRR for the responsibilities,
we conducted a qualitative analysis of the primary annota-
tors’ comments during the Schaekermann et al.-motivated
discussion of disagreements (2018).

Looking at the annotator justification in cases of irre-
solvable disagreement reveals two preliminary themes: (1)
disagreement about the directness of supporting evidence
needed to assign a responsibility and (2) disagreement about
which responsibility a piece of evidence indicates. These
themes align with two significant dimensions of ambiguity
identified by Chen et al. (2018): (a) data ambiguity, mean-
ing multiple reasonable interpretations, often due to miss-
ing or unclear context, and (b) human subjectivity, mean-
ing distinct interpretations resulting from “different levels
of understanding or sets of experiences” among annotators.
Chen et al. further utilize disagreement between coders as a
proxy for ambiguity, with the lower IRR scores relative to
the phases indicating a higher degree of ambiguity. The ir-
resolvable cases suggest that data ambiguity is excacerbated
by soft boundaries between responsibilities in the codebook,
but the supportive external validation of the current code-
book and consistently low IRR after five codebook iterations
suggest an inherent ambiguity to the classification task. To
reduce ambiguity, we view the next reasonable step as con-
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Contains r?

Baseline rate of r

G2 (df=30287)

CS 1.48+0.06 1.03140.001 22122.01
SM 1.214+0.03 1.011 4+0.001 4460.91
CP 1.26 £ 0.03 1.011 4+ 0.001 7171.64
FM 2.16 £0.50 1.053 £ 0.006 11078.42
GB 1.854+0.22 1.043 +0.003 15279.27
BC 1.88 +£0.24 1.047 4 0.003 14357.79
Mean 1.64 1.033 —

Table 9: Within-week responsibility co-occurrence Poisson
regression models. Incidence rate ratios with 95% confi-
dence bounds and deviance (G?) are given, demonstrating
a greater proportion of site updates contain a responsibility
r if another update published in the same week contains 7.
All model coefficients are significant at p < 0.001.

ducting additional qualitative work to elucidate the CJF in
CB updates specifically (as opposed to additional qualitative
inquiry outside the OHC context).

To further investigate the validity of the responsibility
model specifically, we tested the expectation that an author
mentioning a responsibility in an update is more likely to
mention that responsibility in other updates authored in the
same week, as most responsibilities in the CJF are more than
momentary (Jacobs, Clawson, and Mynatt 2016). For each
responsibility r, we fit a Poisson regression to predict the
number of updates on site s in week w that contain r based
on whether a randomly selected journal from s, w contains
r. We consider only weeks with at least 2 updates and use the
total number of updates authored that week on s as the expo-
sure, additionally controlling for the baseline rate of updates
on s predicted to contain 7. Incidence rate ratios are shown
in Table 9. When an update on a site is predicted to contain a
responsibility 7, other site updates in that week are predicted
to contain r at a rate 1.64 times greater than if the update is
predicted not to contain r. This confirms the hypothesized
co-occurrence of responsibilities and provides additional ev-
idence that the responsibility predictions are valid.

Model Integration

By classifying both phases and responsibilities for unanno-
tated updates, we can explore temporal trends and integrate
predictions to explore the relationship between phases and
responsibilities. To mitigate noise introduced by the 4.7% of
invalid predicted phases, we reassign the phase prediction
of updates surrounded by single-phase updates to match the
phase of its neighbors. After reassignment, 2.6% of adja-
cent updates predict a transition considered invalid in our
phase model. Using these reassigned phase predictions, we
consider responsibility predictions that co-occur with valid
phase predictions to establish baseline responsibility occur-
rence proportions and the per-phase deviations from that
baseline.

Phase model predictions over time Figure 2 traces pro-
portions of the phases over time. Few sites have updates in
the PT phase past the first 2 months. NED updates are more
frequent over time, with a temporal variance that reflects
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Figure 2: Predicted phases over time on a log scale. Updates
across sites are binned to the day and proportions are com-
puted based on a rolling average of 30 days (Paul, White,
and Horvitz 2015). The right axis and plotted line indicate
the number of updates used to compute the proportions; note
fewer than 100 updates are available after 40 weeks. Pro-
portions include updates assigned a single phase in addition
to updates with multiple phases (TRN), no assigned phases
(NA), or an invalid combination of multiple phases (INV).

our qualitative observation that NED updates are frequently
written on consistent anniversaries (e.g. a spike around one
year after initial diagnosis). Few patients continue posting
updates in the EOL phase. The vast majority of updates on
CB are written during the treatment phase.

Integrated model predictions Figure 3 shows the fre-
quency of each responsibility relative to its occurrence in
other phases. In contrast to the CJF’s categorization of re-
sponsibilities into phases (Table 1), we find Coordinating
Support, Sharing Medical Info, and Compliance appear less
in treatment updates than in other phases, and Giving Back
and Health Behavior Changes appear less in NED updates
than in other phases.

7 Discussion

Bridging qualitative frameworks describing cancer patients
to a user model of OHC behavior is an important step to-
wards designing personalized digital services for cancer pa-
tients. Practically, we intend to use these models in the de-
sign of recommender systems to connect patients based on
commonalities in cancer phase and expressed responsibili-
ties, in support of an informed social network with knowl-
edge about the cancer experience (Skeels 2010).

We experienced challenges operationalizing taxonomies
from the qualitative frameworks we selected, finding phases
easier to operationalize than responsibilities. To generalize
this method beyond health-related qualitative frameworks,
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PT T

CS +0.7% FM -1.2%—38% ,[cS-1.1% FM +0.9%
SM +4.6% GB -1.3% SM -3.5% GB +0.7%
CP +7.0% BC -2.3% CP-4.6% BC +1.5%
<o 33%
. (0
EOL NED | *0%
CS +38% FM +8.7%| [CS -3.6% FM -0.7%
SM -2.8% GB +14% | |SM -1.5% GB -0.7%
CP +5.2% BC +12% | |CP-7.9% BC -0.4%
11% 67% 65% 94%
End of site

Figure 3: Predicted site phases and responsibilities. Respon-
sibilities are the percentage point change in proportion rela-
tive to updates made in other phases. Phase transitions are la-
beled with the percentage of updates that follow that phase;
invalid transitions e.g. NED—PT are not shown but are in-
cluded in per-phase transition totals.

further study is needed; to facilitate application in other con-
texts, we discuss three aspects of the qualitative frameworks
we selected that made operationalization challenging.

The first aspect is the type of mapping between observ-
able data and conceptual theme. Taxonomic categories will
be easier to define if the corresponding indicators in the data
form a one-to-one map with the qualitative themes. As the
number of indicators that refer to a single theme grows—the
Preparation responsibility had many possible referents—the
category will be increasingly hard to define and identify reli-
ably. In contrast, the T phase had a limited set of medical in-
dicators that could be reliably identified during operational-
ization. The second aspect is the temporal scale of behav-
ioral themes. If themes describe behaviors that span lengths
of time shorter than the update frequency of the available
social media data, a windowed trace of user behavior makes
reliable retrieval difficult. Cancer phase changes slowly and
could be tracked across multiple updates, but frequent re-
sponsibilities were often alluded to without necessary con-
text. The third aspect is the degree to which the qualitative
themes are mutually exclusive. Despite periods of transition,
cancer phases are largely singular and conflicting indicators
within a single update rarely co-occur; responsibilities have
no natural exclusivity and a single update may contain many
indicators each mapping to many responsibilities.

A risk intrinsic to the bridging process we describe in this
work is a perpetuation of the underlying qualitative frame-
work’s implicit lens. Our models reproduce the subjectivi-
ties of the CJF’s source interviews even while mapping to a
broader context of social media users. Thus, we risk magni-
fying or distorting aspects of the patient experience. We sug-
gest that bridging can serve as a compliment to other meth-
ods, enabling researchers to triangulate their understandings



through the inclusion of user behavior models informed by
qualitative themes.

8 Conclusion

In this paper, we explored a process for bridging qualitative
themes to social media user models. We built two models
using taxonomic categories operationalized from two qual-
itative frameworks to classify unstructured text data and
trace behavior over time in an OHC. We identified two
primary challenges in the operationalization process along
with strategies for managing them. We found that super-
vised ML outperforms common keyword-based approaches
in classification performance. In our study of CB users, the
model outputs describe the longitudinal behavior of cancer
patients, which may enable the delivery of personalized dig-
ital health services. Future work includes developing more
sophisticated methods for resolving challenges and under-
standing ambiguity in the operationalization process in or-
der to broaden the potential scope of qualitative themes and
social media contexts in which bridging can be applied.

Acknowledgements

We would like to thank the Minnesota Supercomputing In-
stitute (MSI) at the University of Minnesota, our partners
at CaringBridge, our colleagues in the GroupLens Research
Laboratory, particularly Jasmine Jones and C. Estelle Smith,
and the anonymous reviewers. This work was partially sup-
ported by NSF Grant No. 1464376.

References

Adcock, R., and Collier, D. 2001. Measurement Validity: A
Shared Standard for Qualitative and Quantitative Research. The
American Political Science Review 95(3):529-546.

Beygelzimer, A.; Langford, J.; and Zadrozny, B. 2005. Weighted
one-against-all. In Proc. of AAAI’05, 720-725.

Birnbaum, M. L.; Ernala, S. K.; Rizvi, A. E.; De Choudhury, M.;
and Kane, J. M. 2017. A Collaborative Approach to Identifying
Social Media Markers of Schizophrenia by Employing Machine
Learning and Clinical Appraisals. J Med Internet Res 19(8).

Bruckman, A. S.; Fiesler, C.; Hancock, J.; and Munteanu, C.
2017. CSCW Research Ethics Town Hall: Working Towards
Community Norms. CSCW °17 Companion, 113-115.

Buis, L. R. 2008. Emotional and Informational Support Messages
in an Online Hospice Support Community. CIN: Computers, In-
formatics, Nursing 26(6):358-367.

Chancellor, S.; Mitra, T.; and De Choudhury, M. 2016. Recovery
Amid Pro-Anorexia: Analysis of Recovery in Social Media. In
Proc. of CHI’16, CHI ’16, 2111-2123. ACM.

Chen, N.-C.; Drouhard, M.; Kocielnik, R.; Suh, J.; and Aragon,
C. R. 2018. Using Machine Learning to Support Qualitative Cod-
ing in Social Science: Shifting the Focus to Ambiguity. ACM
Trans. Interact. Intell. Syst. 8(2):9:1-9:20.

Concannon, S. J.; Balaam, M.; Simpson, E.; and Comber, R.
2018. Applying Computational Analysis to Textual Data from
the Wild: A Feminist Perspective. In Proc. of CHI'18, CHI 18,
226:1-226:13. New York, NY, USA: ACM.

De Choudhury, M.; Gamon, M.; Counts, S.; and Horvitz, E. 2013.
Predicting Depression via Social Media. ICWSM ’13.

415

De Choudhury, M.; Sharma, S.; and Kiciman, E. 2016. Character-
izing Dietary Choices, Nutrition, and Language in Food Deserts
via Social Media. In Proc. of CSCW ’16, 1155-1168. San Fran-
cisco, California, USA: ACM Press.

Eschler, J.; Dehlawi, Z.; and Pratt, W. 2015. Self-Characterized
Illness Phase and Information Needs of Participants in an Online
Cancer Forum. In ICWSM.

Fast, E.; Chen, B.; and Bernstein, M. S. 2016. Empath: Under-
standing Topic Signals in Large-Scale Text. 4647-4657. ACM
Press.

Feige, U. 1998. A Threshold of Ln N for Approximating Set
Cover. J. ACM 45(4):634-652.

Ferguson, R. D.; Massimi, M.; Crist, E. A.; and Moffatt, K. A.
2014. Craving, creating, and constructing comfort: insights and
opportunities for technology in hospice. 1479-1490. ACM Press.
Figueiredo, M. C.; Caldeira, C.; Reynolds, T. L.; Victory, S.;
Zheng, K.; and Chen, Y. 2017. Self-Tracking for Fertility Care:
Collaborative Support for a Highly Personalized Problem. Proc.
ACM Hum.-Comput. Interact. |(CSCW).

Geiger, R. S., and Halfaker, A. 2017. Operationalizing Con-
flict and Cooperation Between Automated Software Agents in
Wikipedia: A Replication and Expansion of ‘Even Good Bots
Fight’. Proc. ACM Hum.-Comput. Interact. 1(CSCW).

Gui, X.; Chen, Y.; Kou, Y.; Pine, K.; and Chen, Y. 2017. In-
vestigating Support Seeking from Peers for Pregnancy in On-
line Health Communities. Proc. ACM Hum.-Comput. Interact.
1(CSCW):50:1-50:19.

Hayes, G. R.; Abowd, G. D.; Davis, J. S.; Blount, M. L.; Ebling,
M.; and Mynatt, E. D. 2008. Opportunities for Pervasive Com-
puting in Chronic Cancer Care. In Pervasive Computing, Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg. 262—
279.

Heyland, D. K.; Dodek, P.; Rocker, G.; Groll, D.; Gafni, A.; Pi-
chora, D.; Shortt, S.; Tranmer, J.; Lazar, N.; Kutsogiannis, J.; and
Lam, M. 2006. What matters most in end-of-life care: percep-
tions of seriously ill patients and their family members. CMAJ
174(5):627-633.

Hornbzk, K.; Sander, S. S.; Bargas-Avila, J.; and Simonsen, J. G.
2014. Is Once Enough? On the Extent and Content of Replica-
tions in Human-Computer Interaction. CHI.

Howard, J., and Ruder, S. 2018. Universal Language Model Fine-
tuning for Text Classification. arXiv:1801.06146 [cs].

Huang, T.; Elghafari, A.; Relia, K.; and Chunara, R. 2017. High-
resolution Temporal Representations of Alcohol and Tobacco Be-
haviors from Social Media Data. Proc. ACM Hum.-Comput. In-
teract. 1(CSCW):54:1-54:26.

Jacobs, M.; Clawson, J.; and Mynatt, E. D. 2014. Cancer naviga-
tion: opportunities and challenges for facilitating the breast cancer
journey. 1467-1478. ACM.

Jacobs, M.; Clawson, J.; and Mynatt, E. D. 2016. A Cancer Jour-
ney Framework: Guiding the Design of Holistic Health Technol-
ogy. In Proc. of the 10th EAI International Conference on Per-
vasive Computing Technologies for Healthcare, PervasiveHealth
16, 114-121.

Kiciman, E.; Counts, S.; and Gasser, M. 2018. Using Longitu-
dinal Social Media Analysis to Understand the Effects of Early
College Alcohol Use. ICWSM.

Kuksenok, K.; Brooks, M.; Robinson, J. J.; Perry, D.; Torkildson,
M. K.; and Aragon, C. 2012. Automating large-scale annotation
for analysis of social media content. In Proc. of TextVis '12.



Kulkarni, V.; Kern, M. L.; Stillwell, D.; Kosinski, M.; Matz, S.;
Ungar, L.; Skiena, S.; and Schwartz, H. A. 2018. Latent hu-
man traits in the language of social media: An open-vocabulary
approach. PLOS ONE 13(11):e0201703.

Landis, J. R., and Koch, G. G. 1977. The Measurement of Ob-
server Agreement for Categorical Data. Biometrics 33(1):159—
174.

Langford, J.; Li, L.; and Strehl, A. 2007. Vowpal Wabbit online
learning project.

Li, X., and Guo, Y. 2013. Active Learning with Multi-Label SVM
Classification. In Proc. of IJCAI, 7.

Liu, J.; Weitzman, E. R.; and Chunara, R. 2017. Assessing Be-
havior Stage Progression From Social Media Data. In Proc. of
CSCW ’17, CSCW 17, 1320-1333. ACM.

Ma, H.; Smith, C. E.; He, L.; Narayanan, S.; Giaquinto, R. A.;
Evans, R.; Hanson, L.; and Yarosh, S. 2017. Write for Life:
Persisting in Online Health Communities Through Expressive
Writing and Social Support. Proc. ACM Hum.-Comput. Interact.
1(CSCW):73:1-73:24.

MacLean, D.; Gupta, S.; Lembke, A.; Manning, C.; and Heer, J.
2015. Forum77: An Analysis of an Online Health Forum Dedi-
cated to Addiction Recovery. In Proc. of CSCW 15, CSCW 15,
1511-1526. New York, NY, USA: ACM.

Massimi, M.; Dimond, J. P.; and Le Dantec, C. A. 2012. Finding
a New Normal: The Role of Technology in Life Disruptions. In
Proc. of CSCW ’12, CSCW ’12, 719-728.

Metz, J.; de Abreu, L. F. D.; Cherman, E. A.; and Monard, M. C.
2012. On the Estimation of Predictive Evaluation Measure Base-
lines for Multi-label Learning. In IBERAMIA 2012, Lecture Notes
in Computer Science, 189-198.

Morgan, D. L. 1998. Practical Strategies for Combining Qualita-
tive and Quantitative Methods: Applications to Health Research.
Qual Health Res 8(3):362-376.

Muller, M.; Guha, S.; Baumer, E. P.; Mimno, D.; and Shami, N. S.
2016. Machine Learning and Grounded Theory Method: Conver-
gence, Divergence, and Combination. In Proc. of GROUP ’16,
GROUP ’16, 3-8. ACM.

Newman, M. W.; Lauterbach, D.; Munson, S. A.; Resnick, P.; and
Morris, M. E. 2011. It’s Not That I Don’t Have Problems, I’'m Just
Not Putting Them on Facebook: Challenges and Opportunities in
Using Online Social Networks for Health. In Proc. of CSCW,
CSCW 11, 341-350. ACM.

O’Brien, M.; Stricker, C. T.; Foster, J. D.; Ness, K.; Arlen, A. G.;
and Schwartz, R. N. 2014. Navigating the Seasons of Sur-
vivorship in Community Oncology. Clinical Journal of Oncology
Nursing 18(s1):9-14.

O’Connor, B.; Bamman, D.; and Smith, N. A. 2011. Compu-
tational text analysis for social science: Model assumptions and
complexity. In Proc. of the NeurlPS Workshop on Computational
Social Science and the Wisdom of Crowds.

Olteanu, A.; Varol, O.; and Kiciman, E. 2017. Distilling the Out-
comes of Personal Experiences: A Propensity-scored Analysis of
Social Media. In Proc. of CSCW ’17, 370-386.

Paul, M. J.; White, R. W.; and Horvitz, E. 2015. Diagnoses,
Decisions, and Outcomes: Web Search as Decision Support for
Cancer. In Proc. of WWW ’15, WWW’15, 831-841.
Pennebaker, J. W.; Mehl, M. R.; and Niederhoffer, K. G. 2003.
Psychological aspects of natural language. use: our words, our
selves. Annu Rev Psychol 54:547-577.

416

Prendergast, T. J., and Puntillo, K. A. 2002.
of Life Support: Intensive Caring at the End of Life.
288(21):2732-2740.

Prochaska, J. O., and Velicer, W. F. 1997. The transtheoretical
model of health behavior change. American journal of health
promotion 12(1):38-48.

Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2009. Clas-
sifier Chains for Multi-label Classification. In Machine Learning
and Knowledge Discovery in Databases, 254-269.

Sachdeva, N.; Kumaraguru, P.; and De Choudhury, M. 2016.
Social Media for Safety: Characterizing Online Interactions Be-
tween Citizens and Police.

Salminen, J.; Almerekhi, H.; Milenkovié¢, M.; Jung, S.-g.; An, J.;
Kwak, H.; and Jansen, B. J. 2018. Anatomy of Online Hate:
Developing a Taxonomy and Machine Learning Models for Iden-
tifying and Classifying Hate in Online News Media. ICWSM.

Schaekermann, M.; Goh, J.; Larson, K.; and Law, E. 2018. Re-
solvable vs. Irresolvable Disagreement: A Study on Worker De-
liberation in Crowd Work. Proc. ACM Hum.-Comput. Interact.
2(CSCW):154:1-154:19.

Shah, S. K., and Corley, K. G. 2006. Building Better Theory
by Bridging the Quantitative-Qualitative Divide. Journal of Man-
agement Studies 43(8):1821-1835.

Singer, P; Lemmerich, F.; West, R.; Zia, L.; Wulczyn, E.;
Strohmaier, M.; and Leskovec, J. 2017. Why We Read Wikipedia.
In Proc. of WWW °17, 1591-1600. ACM.

Skeels, M. M.; Unruh, K. T.; Powell, C.; and Pratt, W. 2010.
Catalyzing Social Support for Breast Cancer Patients. In Proc. of
CHI ’10, CHI ’10, 173-182.

Skeels, M. M. 2010. Sharing by Design: Understanding and Sup-
porting Personal Health Information Sharing and Collaboration
within Social Networks. ProQuest LLC.

Star, S. L., and Strauss, A. 1999. Layers of Silence, Arenas of
Voice: The Ecology of Visible and Invisible Work. Computer
Supported Cooperative Work (CSCW) 8(1):9-30.

Tamersoy, A.; De Choudhury, M.; and Chau, D. H. 2015. Char-
acterizing Smoking and Drinking Abstinence from Social Media.
In Proc. of HT ’15, HT °15, 139-148. ACM.

Wen, M., and Rose, C. P. 2012. Understanding Participant Be-
havior Trajectories in Online Health Support Groups Using Auto-
matic Extraction Methods. In Proc. of GROUP 12, GROUP ’12,
179-188. New York, NY, USA: ACM.

Zhang, A. X., and Counts, S. 2015. Modeling Ideology and Pre-
dicting Policy Change with Social Media: Case of Same-Sex Mar-
riage. In Proc. of CHI ’15,2603-2612.

Zhang, S.; Grave, E.; Sklar, E.; and Elhadad, N. 2017. Lon-
gitudinal analysis of discussion topics in an online breast can-
cer community using convolutional neural networks. Journal of
Biomedical Informatics 69:1-9.

Zhang, A. X.; Robbins, M.; Bice, E.; Hawke, S.; Karger, D.;
Mina, A. X.; Ranganathan, A.; Metz, S. E.; Appling, S.; Sehat,
C. M.; Gilmore, N.; Adams, N. B.; Vincent, E.; and Lee, J. 2018.
A Structured Response to Misinformation: Defining and Anno-
tating Credibility Indicators in News Articles. In Companion of
WWW ’18, 603-612. Lyon, France: ACM.

Zhang, A. X.; Culbertson, B.; and Paritosh, P. 2017. Charac-
terizing Online Discussion Using Coarse Discourse Sequences.
ICWSM 10.

Withdrawal
JAMA



