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Abstract

We aim to understand how data, rendered visually as charts
or infographics, “travels” on social media. To do so we pro-
pose a neural network architecture that is trained to distin-
guish among different types of charts, for instance line graphs
or scatter plots, and predict how much they will be shared.
This poses significant challenges because of the varying for-
mat and quality of the charts that are posted, and the limi-
tations in existing training data. To start with, our proposed
system outperforms related work in chart type classification
on the ReVision corpus. Furthermore, we use crowdsourcing
to build a new corpus, more suitable to our aims, consisting of
chart images shared by data journalists on Twitter. We evalu-
ate our system on the second corpus with respect to both chart
identification and virality prediction, with promising results.

1 Introduction

We live in a world full of data, in which charts are rou-
tinely used to communicate complex insights more effec-
tively than spreadsheets or reports (Gray, Chambers, and
Bounegru 2012; Savva et al. 2011; Jung et al. 2017). Twit-
ter is no exception—tens of thousands of data visualisa-
tions on virtually any topic are shared every day. Special-
ist accounts such as “Information is Beautiful”, based on
the eponymous visual design book by David McCandless,
have reached more than 100 thousand of followers. Media
outlets have set up dedicated accounts (e.g. nytgraphics and
ReutersGraphics) to promote their data storytelling work,
which focuses on disseminating information and analysis us-
ing charts. Brands have discovered infographics and other
visual renderings of data as a way to boost traffic and reach
a larger audience—for instance, to promote Narcos, a show
that tells the story of Pablo Escobar, Netflix launched a data
story1 that talks about the economy of Columbian cocaine
trade in a socially engaging way.

Our aim is to understand how data rendered visually
as charts or infographics “travels” on Twitter. Studies in
how information spreads on social media have shown that
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1https://twitter.com/hashtag/cokenomics. Accessed 27 Aug.
2019.

the exposure a post will get is influenced by many fac-
tors, including topic, presentation, timing and social sta-
tus of the author (Guerini, Staiano, and Albanese 2013;
Khosla, Das Sarma, and Hamid 2014; Deza and Parikh
2015). Data visualisations should certainly be no different,
though research in this space is in its beginnings. To this end,
we propose a neural network architecture that is trained to
identify whether a post includes a chart, distinguish among
different types of charts, for instance line graphs or scatter
plots, and predict how much they will be shared.

Figure 1: Examples of different chart types in ReVision (top
line) and in Twitter posts by some major news agencies (bot-
tom line). The ones posted on Twitter tend to be augmented
with additional chunks of text and non-chart-related images.

Building such as system poses several challenges, mostly
because of the varying format and quality of the charts, and
the limited training data available. Unlike general-purpose
visual recognition (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2015), identifying and classifying
charts is much less explored, and only in idealised scenar-
ios (Prasad et al. 2007; Savva et al. 2011; Jung et al. 2017).
By comparison, the data visualisations that are shared on
social media often include additional elements, such as text
and chunks of images. Figure 1 makes this explicit by juxta-
posing examples from existing benchmark datasets used in
prior work (i.e. ReVision (Savva et al. 2011)) and from posts
published by major news agencies on Twitter. We hypothe-
sised that models that were trained on idealised images do
not generalise well to charts from a Twitter feed.

To test this hypothesis, we adapted and trained from
scratch a state-of-the-art Convolutional Neural Network
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(ConvNet) (Simonyan and Zisserman 2015) on the ReVi-
sion corpus. We augmented this dataset with a set of non-
chart images. As a result, in comparison to existing chart-
type identification approaches (Prasad et al. 2007; Savva et
al. 2011; Jung et al. 2017), our learned system was not only
able to classify an image according to its chart type, but also
to identify whether the image displays a chart in the first
place. The system achieved a test accuracy score of 93.61%
on this 12-class classification task (11 chart types plus an
independent non-chart class). It also outperformed the com-
peting systems by Savva et al. and Jung et al. on the 10 chart
types from the ReVision dataset.

To train a model suitable for our aims, we used crowd-
sourcing to build a new corpus, consisting of 3000 image
tweets that have been posted by the Twitter accounts of some
major news agencies. Each image in the corpus has been
labelled with the relevant chart type (or types, where ap-
plicable). We make the resulting corpus publicly available
at: https://github.com/pvougiou/Pie-Chart-or-Pizza. Our hy-
pothesis was confirmed—the performance of the pre-trained
ConvNet architecture was considerably lower on this more
challenging corpus. To improve it, we adapted a training
strategy that enabled our system to achieve an accuracy of
around 86%.

We then used the learned visual features in order to pre-
dict the diffusion of chart-driven information on Twitter.
Since a user is exposed2 to both their followers’ retweets
and favourites (or likes since 2015), we modelled the viral-
ity potential of a tweet as a function of retweet and favourite
counts. Our final system jointly learns to make a prediction
for both these counts given a chart post on Twitter. It consists
of: (i) a ConvNet that extracts features from the chart image;
(ii) a bidirectional architecture with Gated Recurrent Units
(GRUs) (Cho et al. 2014) that processes the accompanying
text; and (iii) a feed-forward architecture that expects a set
of features that describe its author. We experimented with
alterations of this model using different input signals (e.g.
with or without the author- and the image-related features)
in order to determine their effects on the prediction. Our
approach was inspired by recent work by Zhao et al., who
used a multi-modal neural architecture on the binary task of
retweet prediction. However, unlike Zhao et al., we did not
use the pre-trained ConvNet by Simonyan and Zisserman.
Since our task focuses on charts, we trained and fine-tuned
ours from scratch. In addition, our system relied on com-
putationally less expensive author-related features that do
not model each user’s past retweet behaviour and following
relations. Despite the simpler design, the experiments con-
firmed that their inclusion results in substantial performance
improvements. The main contributions of this paper are as
follows:

• A ConvNet architecture for chart classification, which
outperforms other competing systems on the ReVision
benchmark, while also being able to exclude images that
do not contain charts.

2See instructions at: https://help.twitter.com/en/managing-
your-account/understanding-the-notifications-timeline. Accessed
27 Aug. 2019.

���� ���� ���� ���� ����

Figure 2: The architecture of our ConvNet

• A new dataset of real-world data visualisations from
Twitter. Using this dataset, we show the problem of apply-
ing approaches trained on idealised corpora to data col-
lected in the wild. To overcome it, we devise a training
strategy that improves the accuracy of our end-system by
more than 15%.

• A multi-modal neural architecture that jointly learns to
predict the number of times a chart post will be retweeted
and liked. We show that coupling textual and author-
related features with our learned visual features results in
more accurate predictions.

2 Background

Our work synthesises two strands of research, chart identifi-
cation and virality prediction of images on social media.

2.1 Classifying Data Visualisations

The classification of general-purpose images has been thor-
oughly investigated in the literature. There has been a sub-
stantial amount of work that proposes various adaptations
of ConvNets for large-scale visual recognition tasks, with
promising results (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2015). Nonetheless, the classifi-
cation of chart images according to their type has only been
sporadically explored. Shao and Futrelle and Huang and Tan
and classified vector images across 5 (Shao and Futrelle
2006) and 4 (Huang and Tan 2007) different chart types, re-
spectively by first extracting high-level shapes from them.
Prasad et al. used features based on curve saliency, local
segmentation, Histogram Oriented Gradients and Scale In-
variant Feature Transform to represent a given chart image
(Prasad et al. 2007). They trained a multi-class SVM with
only the images whose features were found to be the most
discriminative according to the Pyramid Match algorithm.

Savva et al. introduced the ReVision corpus, and ex-
panded the classification task to 10 chart types (Savva et
al. 2011). They proposed a set of visual and text features
that were computed by extracting visual patches and re-
gions of text from a given chart image. They trained a multi-
class SVM, achieving an average accuracy of 80%. More
recently, Jung et al. employed an out-of-the-box ConvNet
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(Szegedy et al. 2015) on ReVision achieving an accuracy
of 76.7% − 85% (Jung et al. 2017). In comparison to these
works, we introduced one additional chart type and aug-
mented the training data with a non-chart class, which en-
abled our system to exclude irrelevant images (for instance
the picture of a pizza vs a pie chart). While our architec-
ture was trained on a more challenging task and used less
than half of the parameters from (Jung et al. 2017), it outper-
formed both the above approaches when tested on ReVision.

2.2 Predicting Image Virality

Understanding the diffusion of visual content on social me-
dia is critical for many domains—from marketing to fake
news. Several prior works have tried to identify what an
image is about and to extract the most relevant features to
predict virality (Can, Oktay, and Manmatha 2013; Khosla,
Das Sarma, and Hamid 2014; Deza and Parikh 2015; Zhao
et al. 2018). This is modelled according to some exposure
metric (e.g. number of upvotes and downvotes (Deza and
Parikh 2015) or number of views (Khosla, Das Sarma, and
Hamid 2014)), depending on the social media platform. The
task can be designed as binary classification by ranking
images according to the metric and allocating the ones at
the top and bottom of the scale to their respective classes
(Deza and Parikh 2015); or as regression by seeking to di-
rectly estimate the metric (Can, Oktay, and Manmatha 2013;
Khosla, Das Sarma, and Hamid 2014). We opted for the lat-
ter and built a system that jointly learns to predict counts
of retweets and likes of a chart message. To the best of our
knowledge, this work is the first attempt to estimate the vi-
rality of visualisations in the context of social media.

3 Our System

We first present the architecture of the ConvNet that identi-
fies whether an image displays a chart, and in case it does,
its exact chart type. We used a pre-trained version of this ar-
chitecture as part of a multi-modal neural architecture that
jointly learns to predict the number of times a chart tweet
will be retweeted and liked—see Figure 3 for an overview.

3.1 Chart Images Identification

We adapted the VGGNet architecture proposed by Si-
monyan and Zisserman to the requirements of our chart
identification problem. This architecture has been originally
trained and evaluated on the ILSVRC-2012 task that consists
of 1.4M images distributed across 1000 classes. Our sce-
nario was different—we had considerably fewer classes (12
classes versus 1000), but also much less training data (the
ReVision dataset, see below). For these reasons, we needed
an implementation that is computationally more efficient.

During both training and testing the input to our ConvNet
was a fixed-size 160 × 160 RGB image. Similarly to VG-
GNet, the network used a stack of convolutional layers, all
of which with a receptive field of 3 × 3. The convolution
stride was set to 1. The spatial dimension of convolutions
was preserved by zero-padding their input volumes with 1
pixel on each side. We performed max pooling over 2 × 2
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Figure 3: Our multi-modal neural architecture

pixel windows with a stride of 2. The stack of convolu-
tional layers was followed by three fully-connected layers,
where the latter used a softmax function to predict the class
to which the input image belonged. All convolutional and
fully-connected layers used the ReLU as non-linear activa-
tion function.

Figure 2 displays the architecture of our ConvNet. In prin-
ciple, the architecture is similar to the “A” configuration of
VGGNet (Simonyan and Zisserman 2015). Nonetheless, the
number of feature maps per convolutional layer and the di-
mensionality of the hidden states in the fully-connected lay-
ers is much lower in our case. In addition, the fact that the
fixed resolution of the input images is lower than the one
expected in VGGNet results in smaller feature maps output
by the last max pooling layer. Deep neural networks are sus-
ceptible to overfitting, especially in the case of small training
corpora such as ours (Cogswell et al. 2015). Consequently,
our goal was to reduce the number of our system’s learnable
parameters to limit its overfitting tendencies (Cogswell et al.
2015). Our ConvNet consisted of 2482k (excluding the final
fully-connected layer) parameters, which is around 129M
weights less than VGGNet’s “A” configuration.

3.2 Virality Prediction

Let e(a,m,x) be a message posted on Twitter by the user
a, where m and x are the chart image and the snippet of
text that accompany the message. Let also x1, . . . xT be the
words of which x consists s.t. x = (x1, . . . , xT ). We built a
model that predicts the number of times that e(a,m,x) would
be retweeted, y(r) ∈ R, and liked, y(l) ∈ R. Our end-to-
end architecture consists of: (i) a ConvNet that extracts vi-
sual features from the chart image m, (ii) a feed-forward ar-
chitecture that processes the author’s, a, characteristics, and
(iii) a bidirectional GRU that processes the information in
the text x.

Processing the Chart Image We used a pre-trained ver-
sion of the ConvNet presented in Section 3.1 to extract visual
features from the chart image m from a tweet. Let v ∈ R

512

be the output of this ConvNet (i.e. ConvNetθ), stripped of
its last fully-connected and softmax layers. The vector rep-
resentation of a given chart m, v, is computed by forward
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propagating as follows: v = ConvNetθ(m).

Processing the Text We used a bidirectional GRU to en-
code the information in x. Let

−→
h l

t,
←−
h l

t ∈ R
m be the aggre-

gated output of a hidden unit of the forward and backward
pass respectively at timestep t = 1 . . . T and layer depth
l = 1 . . . L. The vectors at zero layer depth, h0t = Wx→hxt,
represent the tokens, x1, . . . , xT , of x that are given to the
network as input. The parameter matrix Wx→h has dimen-
sions [|X|,m], where |X| is the size of the input dictio-
nary. We initialised this matrix using GloVe embeddings
(Pennington, Socher, and Manning 2014) and allowed the
network to fine-tune it during training. All the subsequent
matrices have dimension [m,m] unless stated otherwise. At
each timestep t,

−→
h l

t and
←−
h l

t are computed as follows:
−→
h l

t = GRU(
−→
h l

t−1, h
l−1
t ), (1)

←−
h l

t = GRU(
←−
h l

t−1, h
l−1
t ). (2)

The context vector hlt ∈ R
2m that encapsulates the in-

formation from both the forward and backward pass at each
layer l and timestep t is computed as hlt = [

−→
h l

t;
←−
h l

t], where
[. . . ; . . .] represents vector concatenation. Subsequently, the
vector that encapsulates all the information from x, is com-
puted by aggregating the hidden states of the two passes at
their last processing timestep (i.e. t = T and t = 1 for
the forward and backward pass respectively) of the topmost
layer s.t. s = [

−→
h L

T ;
←−
h L

1 ].

Processing the Author We incorporated the author-
related features of Can, Oktay, and Manmatha in our multi-
modal architecture (Can, Oktay, and Manmatha 2013). The
vector that represents the author who posted the message
e(a,m,x) is computed as follows:

ψ = [a(f); a(s); a(l); a(b); a(r)], (3)

where a(f), a(s), a(l), a(b) ∈ R are the total number of fol-
lowers, posts, likes and friends (i.e. number of accounts that
the author follows) respectively that a has and a(r) ∈ R is
the ratio of the number of followers to the number of friends.
Following Can, Oktay, and Manmatha, we transformed the
a(f), a(s), a(l) and a(b) values to logarithmic scale3 before
feeding them into our model (Can, Oktay, and Manmatha
2013).

Likes and Retweets Prediction After computing the s, v
and ψ vector representations for the text, chart image and
author respectively, the system projects the three modalities
into a shared feature space. The multi-modal context vector
ce for e(a,m,x) is computed as:

ce = ReLU (Waψ +Wss+Wvv) , (4)

where Wa : R
5 → R

m, Ws : R
2m → R

m and Wv :
R

512 → R
m are biased linear mappings. Our formulation

is similar to Zhao et al.’s “multi-modal fusion layer” (Zhao

3 To avoid zero values, we incremented each variable by one
before computing its natural logarithm.

et al. 2018). Zhao et al. computed the multi-modal context
vector using solely the extracted visual and textual features.
They subsequently ranked the preference of the author’s fol-
lowers towards this vector. The design of our user features
enabled us to directly include them in the computation of the
context vector. Furthermore, Zhao et al. used the hyperbolic
tangent in their multi-modal fusion layer. However, in our
experiments, this resulted in lower performance compared
to the rectifier. After computing the context vector ce, our
architecture predicts the expected number of retweets and
likes for e(a,m,x) as follows:

ỹ = ReLU
(
W(II)

c ReLU
(
W(I)

c ce

))
, (5)

y(r) = W(r)
y ỹ and y(l) = W(l)

y ỹ, (6)

where W
(I)
c ,W

(II)
c : Rm → R

m and W
(r)
y ,W

(l)
y : Rm →

R are biased linear mappings.

Training We modelled virality prediction as a regression
task. During training, our model aims to minimise the sum
of the squared losses of the predicted retweet and like counts
with respect to their target values, y(r)t and y(l)t :

cost = ‖y(r) − y(r)t ‖22 + ‖y(l) − y(l)t ‖22. (7)

We addressed the large variation in the number of retweets
and likes of different chart tweets by computing the natural
logarithm3 of the target values before bootstrapping them in
the loss function (Can, Oktay, and Manmatha 2013; Khosla,
Das Sarma, and Hamid 2014).

4 Datasets

In this section, we present the three corpora that we used
for training and evaluation: (i) ReVision+, (ii) DataTweet,
and (iii) DataTweet+. The first is based on ReVision, which
is provided by Savva et al.. The other two are collections
of image tweets authored by data journalists and labelled
using crowdsourcing. For the purpose of the experiments,
all three corpora are randomly split into training, validation
and test, with respective portions of 70%, 15% and 15%
for ReVision+ and DataTweet, and 60%, 20% and 20% for
DataTweet+. Since DataTweet+ is smaller than the other
two corpora, we increased the portion of its validation and
test set to guarantee more representative samples.

4.1 ReVision and ReVision+

The original ReVision corpus contains 2965 images of
charts distributed across 15 categories. In addition to the
10 categories used by Savva et al. and Jung et al., we con-
sidered: (i) column charts as part of the “bar chart” class;
(ii) box plots as an extra class; and (iii) non-chart im-
ages. Incorporating column charts as part of the bar chart
class enabled us to increase the number of available im-
ages for this class. In preliminary experiments, we found
that these additional training examples consistently resulted
in minor performance improvement for the bar chart class.
The inclusion of non-chart images is also crucial since we
are tackling a slightly more complex scenario than chart
identification, which was the focus in (Savva et al. 2011;
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Jung et al. 2017). Our model needs to be able to distin-
guish between posts with images that are not visualisations,
and those that indeed contain charts. We appended exam-
ples for the non-chart class to the corpus by randomly sam-
pling images from the ILSVRC-2012 dataset (Krizhevsky,
Sutskever, and Hinton 2012). For every two chart images,
we sampled three random images from ILSVRC-2012—we
were keen to create a dataset that is more realistic with re-
spect to the distribution of classes without biasing it heavily
in favour of the non-chart class. The resulting corpus, which
we refer to as ReVision+, has a total of 6061 images (i.e.
2425 chart images distributed across 11 categories and 3636
non-charts images).

4.2 Collecting Data Visualisations from Twitter

We built a list of 20 Twitter accounts dedicated to data-
driven journalism (e.g. GuardianData4 and nytgraphics5).
The list was formed in a manual fashion as follows. Many
of the major news agencies have Twitter accounts that fo-
cus on data visualisations. We browsed the timeline of those
accounts, and we followed the suggestions by Twitter (i.e.
the “You may also like” section) about accounts with simi-
lar content. We included accounts for which we empirically
found that ≥ 40% of their shared content included charts.

We then collected the most recent timeline6 of each one of
the 20 accounts using the Twitter API, discarding all tweets
without images. When a tweet included multiple images, we
stored each unique combination of e(a,m,x) (see Section 3.2)
separately. The resulting corpus consists of 34491 tweets.
We split this dataset into two parts. The first consists of 3000
messages, whose images we annotated using crowdsourc-
ing. The second was set aside for the initial training of our
multi-modal architecture on virality prediction. We refer to
them as DataTweet+ and DataTweet respectively.

Building a Realistic Data Visualisation Corpus We ran
an experiment on the Figure Eight platform7 in order to iden-
tify the type of charts that are depicted in in the DataTweet+
dataset. In addition to the 3000 randomly selected images
tweets, we manually annotated a set of 50 images, which we
included as gold standard.

Labelling tasks are designed as so-called Human Intel-
ligence Tasks (or HITs), the unit of work on paid micro-
task platforms, such as FigureEight. Each HIT consisted of
three images, one of whose was always a gold standard ex-
ample. For each image, the participants were initially asked
whether one or more charts were depicted in it, and could
choose between a “Yes” and a “No”. When no chart was
present, they could continue annotating the other images in
the HIT. If they answered affirmatively, they were presented
with two follow-up questions: first, the participants had to
count the number of charts from the image; then they had
to classify them. Classification was designed as multiple-
choice with checkboxes—crowdworkers were asked to pick

4https://twitter.com/GuardianData
5https://twitter.com/nytgraphics
6https://developer.twitter.com/en/docs/tweets/timelines/

overview. Accessed 27 Aug. 2019.
7https://www.figure-eight.com

all options that applied. We also included an option for
“Other” in case the tweet contained a less common chart
type. We collected 5 annotations per image. The partici-
pants were payed 1¢ for each image they annotated. Partic-
ipants who failed to retain an accuracy ≥ 80% on the gold
standard examples were excluded from the experiment. As
a further quality guarantee, we compared for each answer
its total number of selected chart types with its total num-
ber of depicted charts. In case the first was greater than the
second, the annotation was disregarded. Only images with
inter-annotator agreement ≥ 60% were included in the re-
sulting DataTweet+ corpus. The Fleiss’ Kappa score for the
annotations of the images in DataTweet+ was 0.8741. We
make the DataTweet+ corpus publicly available at: https:
//github.com/pvougiou/Pie-Chart-or-Pizza. Table 1 presents
the distribution of chart types in the DataTweet+ corpus. For
the experiments presented in this paper, we only retained
chart images that displayed a single chart type (i.e. 1142
chart image tweets).

5 Experiments

We started by training our ConvNet on ReVision+ (chart
and non-chart images; 12 classes, including a non-chart
class). We evaluated the trained model on images from
ReVision+ and DataTweet+. We then fine-tuned the Con-
vNet on the training set of DataTweet+ and re-evaluated
performance on its validation and test sets.

We used each of the two trained ConvNets from the pre-
vious step (without their classification layer) separately in
our multi-modal neural architecture to predict the expected
number of likes and retweets for a chart post. We trained
our systems using the DataTweet corpus, which consists of
both chart and non-chart images. Since we sought to pre-
dict the virality of data visualisations on Twitter, we focus
our evaluation on charts and we use those from the test
set of DataTweet+. Besides exploring the contribution of
the learned visual features, we investigate how the inclusion
of different components (e.g. author-related features) influ-
ences the performance in the task.

All images were reshaped to 192 × 192. During ev-
ery training phase, we artificially enlarged the num-
ber of available images in each corpus by adopting
Krizhevsky, Sutskever, and Hinton’s data augmentation
practices (Krizhevsky, Sutskever, and Hinton 2012). We
generated variations for each image by extracting random
160×160 patches and their horizontal reflections and trained
our networks on these patches. At test time, we extracted the
centre 160×160 patch. The RGB values of each image were
centred and normalised by subtracting the mean and divid-
ing with the standard deviation, over each pixel from the
training set of ReVision+.

5.1 Training Details

The ConvNet’s training objective is to minimise the mean
of the negative log-likelihoods of the predictions for a mini-
batch of 80 images. The initialisation weights were sampled
from a normal distribution with zero mean and 0.01 vari-
ance; biases were initialised with zero. Optimisation was
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Table 1: Distribution of chart types in DataTweet+. For instance, there are in total 23 images that include area charts, 19 of
which contain solely area charts, 3 area charts along with bar charts, and 1 that contains area charts and line graphs. The
numbers in brackets represent images that depicted multiple charts of more than two different types. The left table represents
categories whose examples included only a single chart type or no chart at all (i.e. No-Chart).

Chart
Type

Chart
Type

Area Bar Line Map Scatter Pie

Table 39 Area 19 3 1 − − −
Venn 2 Bar 3 378

58
(1a, 1b)

12 (1a) − 7 (1b)

No-Chart 1334 Line 1
58

(1a, 1b)
258 2 (1a) 3 1 (1b)

Map − 12 (1a) 2 (1a) 382 − −
Scatter − − 3 − 31 −

Pie − 7 (1b) 1 (1b) − − 33
aImage including more than two different chart types (i.e. multiple bar charts, line graphs and a map).
bImage including more than two different chart types (i.e. a bar chart, a line graph and two pie charts).

performed using Adam (Kingma and Ba 2014) with a learn-
ing rate of 10−4. Due to the limited size of the training data,
we found that tuning the regularisation parameters properly
was crucial in achieving the best performance. We included
an l2 regularisation term of 5 · 10−4 in the cost function
and introduced a dropout value of 0.5 in the first two fully-
connected layers. By contrast to VGGNet, we also used
batch normalisation before each non-linear activation func-
tion and after each convolutional and fully-connected layer
(Ioffe and Szegedy 2015). Training stopped at the iteration
after which the validation error did not improve.

Fine-tuning the ConvNet. We adapted the ConvNet that
has been trained on ReVision+ to the requirements of
DataTweet+ by fine-tuning its parameters. The deeper lay-
ers of a neural architecture tend to capture corpus-specific
features whereas the top ones identify general extraction
patterns (Razavian et al. 2014). Consequently, we chose to
“freeze” the parameters of the convolutional layers and tune
only the fully-connected layers of our architecture (see Fig-
ure 2). We used the same training parameters as the ones
described in Section 5.1 except the learning rate, for which
we used half of its original value.

Multi-modal Neural Architecture. Besides a ConvNet,
this consists of modules that process the author-related cues
and the text; and predict the retweet and like counts. We
used two layers of 256 bidirectional GRUs, and included the
|X| = 6k more frequent tokens from the texts. We initialised
the weights of the modules processing the textual and au-
thor information with random uniform distribution between
−10−3 and 10−3. Optimisation was performed using Adam
with a learning rate of 10−4 and a batch size of 100. The
training was regularised by an l2 term of 0.02. Batch nor-
malisation and dropout were introduced after each fully-
connected layer. We found that increasing the drop rate of
the latter to 0.7 helped with some initial overfitting problems
that we experienced.

5.2 Chart Identification Evaluation

We evaluated our performance using the accuracy and
weighted F1 metrics on the validation and test set of
ReVision+. Except for Venn diagrams and area charts,
which were classified with respective F1 scores of 72% and
71%, all classes were computed with F1 ≥ 83%. Our model
performed well in recognising images whose content is ir-
relevant to charts with binary F1 ≥ 98%. Furthermore, we
compared our performance against the reported accuracy
scores in (Savva et al. 2011) and (Jung et al. 2017) on ReVi-
sion by excluding instances of box plots and non-charts from
the validation and test set of ReVision+. Please note that
we report our results on the validation, which is the set for
which we optimise our performance, and the test set without
performing k-fold cross-validation. This enables us to show
how the performance of the single, originally trained Con-
vNet changes across the different tasks, before and after fine-
tuning for both chart identification and virality prediction
(see Section 5.3). Our system outperformed both. Notably,
it was able to achieve greater accuracy scores than Jung et
al.’s approach using less than half of its parameters.

Subsequently, we tested our trained system on
DataTweet+. We saw a notable performance drop with
respect to both the multi-class and binary classification
tasks. This is explained by the increased complexity of
identifying the chart-related content in images that contain
an increased amount of “noisy elements” (e.g. the bar chart
and line graph of Table 1); it is also supported by our lower
performance on the binary classification task. However,
fine-tuning our architecture on this corpus allowed us to
substantially increase our performance in terms of both
chart and chart-type identification despite the relative—by
deep learning standards (Simonyan and Zisserman 2015)—
small size of the available datasets. Our performance after
fine-tuning also suggests that the features captured by
the top, frozen layers of the architecture were useful to
the properly-tuned deeper layers. Table 2 summarises the
results.
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Table 2: Chart identification results on the validation and
test sets. ‡ denotes binary experiments in which we seek to
recognise chart images from other general-purpose images
(No-Chart) whose content is irrelevant to charts.

System
Accuracy F1

Valid. Test Valid. Test
Ours on
ReVision+ 95.48 93.61 95.49 93.56

Ours on
ReVision+
(‡)

99.01 98.55 99.01 98.57

R
eV

is
io

n

(Savva et
al. 2011) 80.008 − − −
(Jung et al.
2017)

76.70
(85.0??) − − −

Ours 90.20
85.93 91.61 86.88

D
a

ta
T

w
ee

t+

Ours (‡) 76.16 74.55 75.86 73.55

Ours +
Tuning (‡) 89.90 88.08 89.84 88.08

Ours 65.45 65.25 71.72 70.21

Ours +
Tuning 87.07

85.86 86.56 85.57

5.3 Virality Prediction Evaluation

We seek to identify a chart image from a social media feed,
and, subsequently, predict its potential of going viral. The
architecture used for classification enables us: (i) to detect
images of charts among other general-purpose images on
social media, and (ii) to extract from a given chart image
high quality features that are used in virality prediction. For
evaluating virality prediction, we assume the classification
architecture has already identified a shared image as a chart.

We assessed the performance in terms of Root Mean
Square Error (RMSE) and Spearman’s rank correlation (ρ)
between the predicted and the actual numbers of likes and
retweets. We computed the expected lower bound scores by
using a baseline based on population statistics. This base-
line uses the mean and standard deviation (σ) of the like and
retweet counts of the DataTweet+’s training set to sample
values from a Gaussian distribution for each item in the test
set. Furthermore, we couple the original “A” configuration of
VGGNet (Simonyan and Zisserman 2015), pre-trained9 on
ILSVRC, with the modules of our multi-modal architecture
that process the textual and author features (see Section 3.2).
We train this baseline with the same hyper-parameters as
the ones presented in the “Multi-modal Neural Architec-
ture” paragraph of Section 5.1. Please note that we adopt
the original specification of VGGNet, and we set the fixed-
size of the RGB input image to 224 × 224. We refer to the
visual features that are extracted using the original VGGNet
as mILSVRC.

We trained and evaluated different alterations of our ar-
9https://pytorch.org/docs/stable/torchvision/models.html

Table 3: RMSE (lower is better) in log scale and ρ (higher
is better) for like and retweet count predictions on the chart
images from the test set of DataTweet+. Rows that start with
the + sign refer to systems that process the textual message
that accompanies a particular tweet along with one addi-
tional cue. For instance, “+ Author (a)” refers to the results
from processing both textual and author-related signals. The
average performance of the stats baseline along with its σ is
reported after sampling 100 times.

System
# of Likes # of Retweets

RMSE ρ RMSE ρ

Stats Baseline 1.545
(.07)

.008
(.064)

1.764
(.07)

.007
(.064)

Text (x) .955 .371 1.087 .402

+ Author (a) .899 .479 1.005 .490

+ Chart
(mILSVRC) .951 .421 1.081 .411

+ Chart
(mReVision+) .917 .450 1.018 .498

+ Chart
(mDataTweet+) .911 .429 1.006 .494

x+a+mILSVRC .861 .527 .974 .528

x+ a+
mReVision+

.862 .507 .969 .536

x+ a+
mDataTweet+

.858 .532 .962 .554

chitecture in order to determine the separate contribution
of each of the three groups of features (text-, author- and
chart-related) on this task. We started by training one sys-
tem (excluding the modules that process the author- and
chart-related cues) solely using the text x of each post. We
progressively added more signals and their processing mod-
ules. Finally, we compared our predictions using the visual
features (mDataTweet+) that were extracted by the fine-tuned
ConvNet to the ones with the features from the ConvNet that
was trained only on ReVision+ (mReVision+) and from VG-
GNet on ILSVRC (mILSVRC).

The findings are summarised in Table 3. We note that con-
sidering all available features resulted in the best possible
performance. In particular, combining the text with the au-
thor cues led to a higher performance gain for the number
of likes than with any of the visual features. However, us-
ing author- and visual-related features from mReVision+ and
mDataTweet+ boosted almost equally the rank correlation for
the number of retweets. In all different combinations, the in-
clusion of the fine-tuned mDataTweet+ features meant a lower
average RMSE compared to the mReVision+ ones.

Despite the much lower computational complexity of
the visual component of the systems equipped with the
mDataTweet+ features (around 129M less parameters than
VGGNet’s “A” configuration), they perform better in both
retweet and like prediction than the ones equipped with
mILSVRC. This performance difference is most notable for
retweet prediction. This finding highlights the fact that a
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Figure 4: Classification results from testing our originally
trained system along with its fine-tuned version (+ Tuning)
against different image examples on the Web.

chart is fundamentally different from the general-purpose
images included in ILSVRC. The features captured at
the latter layers when training on ILSVRC contribute to
the recognition of characteristics (e.g. an elephant’s tusk)
from the 1000 classes of interest. Accurate classification of
general-purpose images is performed on the basis of those
characteristics. Such characteristics, however, are not domi-
nant in our task. Training and fine-tuning on a chart iden-
tification task enables our architecture to implicitly learn
to capture the characteristics (e.g. the density of lines and
the colour-coding) that are determinant of a particular chart
type. We believe that the improved performance of the sys-
tems equipped with the mDataTweet+ features indicates that
capturing such characteristics can result in more accurate
predictions about the virality potential of chart-driven con-
tent.

6 Discussion

Our focus in this work was to propose a pipeline with respect
to both dataset creation and model design that would enable
us to predict the virality potential of chart-driven messages.
Our results in Section 5.3 highlight the different levels of
importance of the various cues (i.e. related to the text, data
visualisation and author) in this prediction task. The implicit
features that our architecture learns to capture when it is
tuned to the chart identification task result in better perfor-
mance for virality prediction than a much more computa-
tional expensive visual recognition module which has been
trained on a collection images larger by two orders of magni-
tude than ours (Simonyan and Zisserman 2015). We believe
that exploring the particular chart characteristics that make a
chart go viral is an extremely promising direction for future
work. This research direction is in line with recent works
that have sought to measure the similarity of different scat-
ter plots either by grouping together charts depicting similar
patterns (Abbas et al. 2019) or by leveraging information
based on human visual perception in order to learn subjec-

tive similarity features (Ma et al. 2020). Their findings along
with any additional visual quality metrics, such as blurri-
ness, image resolution and colour-coding, (Antol et al. 2015;
Behrisch et al. 2018) could be used to form a list of particular
requirements according to which an automatic system would
generate data visualisations. Our virality prediction archi-
tecture could be used to estimate the expected number of
retweet and like counts of these visualisations, for the same,
artificially selected, author and accompanying text message.
Based on these predictions, we would be able to better un-
derstand chart characteristics that result in higher retweet or
like counts. We see our DataTweet+ dataset as an important
step towards this direction—both with respect to the qual-
itative (e.g. general format of data visualisations shared on
social media) and quantitative (e.g. training data, distance
between the automatically generated charts and the empiri-
cal ones from our corpus) analysis required for the design of
the above generator.

We opted to evaluate the two parts of our proposed
pipeline (i.e. chart identification and virality prediction) sep-
arately to better explore their individual strengths and limi-
tations. The tight relation between these two tasks becomes
more apparent in Table 3, where the fine-tuned features of
the model trained on the charts from DataTweet+ enable
us to achieve the best performance for virality prediction.
Through our training strategy (i.e. training on ReVision+
and fine-tuning on DataTweet+), our ConvNet learns to cap-
ture the visual characteristics that not only differentiate a
data visualisation from a general-purpose image but also
classify it according to its depicted chart type. Our results in
Section 5.3 highlight that these learned features are imme-
diately applicable to virality prediction since the ConvNets
that are trained on the more relevant datasets (i.e. ReVision+
and DataTweet+) achieve better performance than the orig-
inal VGGNet—a much more computational expensive sys-
tem which has been trained on a collection images larger by
two orders of magnitude than ours.

We tested both chart identification ConvNets against a
representative set of images from the web to gain a better
understanding of their performance differences. The find-
ings are summarised in Figure 4. We note that examples of
images that can be clearly categorised to one of the 11 chart
types or to the non-chart class are correctly classified by both
systems (i.e. Figures 4i, 4ii, 4iv, 4v and 4vi). In addition,
fine-tuning the system makes it more efficient at categoris-
ing more borderline cases of images, such the ones presented
in Figure 4vii, 4viii, 4ix and 4x, that resemble a chart with-
out being one. This is in line with the performance on the
binary task reported in Table 2, where the fine-tuned vari-
ant achieved an improvement of at least 14% in F1 score
in recognising images whose content is irrelevant to charts,
compared to the initial system.

While the accuracy with which charts were identified
has improved considerably after fine-tuning our ConvNet
on DataTweet+, there were still images that posed chal-
lenges to the task. These tend to fall into one of these
three categories: (i) dashboard visualisations that consist of
more than a single chart type (e.g. Figure 4iii); (ii) charts
that are embedded in images with complex text and graph-
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Figure 5: Average RMSE in log scale of our fine-tuned system (x + a +mDataTweet+) across different authors. Each author is
presented using their corresponding features: (a(f), a(s), a(l), a(b), a(r)).
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Figure 6: Average RMSE in log scale of our fine-tuned system (x + a +mDataTweet+) across different chart types. Only chart
types with at least 5 examples in the test set of DataTweet+ have been included in this evaluation.

ics layouts (e.g. Figure 4xi); and (iii) charts with a high
share of “chartjunk”, which use textures, illustrations and
background imagery rather than standard visual represen-
tations of data (Tufte 1986) (e.g. Figure 4xii). While the
crowdsourcing pipeline we implemented could handle im-
ages with single or multiple charts and chart types with
high confidence, our experiments focused on single chart-
type examples. The ConvNet models presented earlier could
be naturally extended to predict both the number of charts
and their type to cover. Furthermore, we could expand the
DataTweet+ dataset to include examples of visualisations
from the other two categories. This would help us tune the
model better to address more borderline scenarios.

Almost 99% of the DataTweet+ corpus was made of
images that were at least six months old. As many as
95% of the images were older than a year. Hence, we ex-
pected that the retweet and like rate of each message would
have been almost zero at data collection time. Since our
goal was to predict the aggregated exposure that a chart
message would get, we built upon previous work on pre-
dicting image virality (Can, Oktay, and Manmatha 2013;
Khosla, Das Sarma, and Hamid 2014), and opted not to

model time in our architecture. Exploring retweets and likes
as a function of time would be an interesting direction of
future work, and we believe that our approach could serve
as a starting point. A trivial method for parameterising our
model over the “age” of a chart post would be to introduce it
as an additional input, concatenated with the author features
(see Section 3.2).

In addition to the virality experiments presented in Sec-
tion 5.3, we compared the predictions of our best perform-
ing system (i.e. x + a + mDataTweet+ in Table 3) to the
actual numbers of retweets and likes across authors who
posted at least 10 chart images (see Figure 5). Each au-
thor in Figure 5 is presented using their corresponding fea-
tures: (a(f), a(s), a(l), a(b), a(r)). We note that the RMSE
was lower the closer the ratio between number of follow-
ers and friends, a(r), was to one. The variability of the er-
ror values was also less for the authors with a lower a(r).
This means that the predictions for the expected number of
retweets and likes of a particular chart post deviated less
from their actual values when a(r) was almost 1.

Figure 6 shows the RMSE of the predicted number of
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retweets and likes across chart types with at least 5 examples
in the test set of DataTweet+. We note that there were only
minor deviations in the mean RMSE for predicting the two
metrics across chart types. This means that our end-system
was capable of making predictions for chart types, which
based on the mean values of their corresponding messages,
have both high (e.g. scatter graphs and maps) and low (e.g
tables) expected number of retweets and likes.

7 Conclusion

To the best of our knowledge, this work constitutes the first
attempt to estimate the virality of data visualisations on so-
cial media. We proposed an end-to-end learnable approach
that identifies images of charts as they are posted on social
media, and predicts their virality potential. We believe our
work is a first step towards addressing the propagation of
fake news through charts on social media; a chart which is
expected to gain significant exposure could be subjected to
further inspections regarding the accuracy of its content.

In our experiments, we did not investigate the identifica-
tion of charts in images that display more than one chart
types. Nonetheless, we found that examples of such images
tend to be relatively common among data journalists’ posts
(as shown in Table 1). A natural extension of this work is
the implementation of an architecture capable of predict-
ing both the number of depicted charts and their type. As
noted briefly in the discussion, the ConvNets trained on
ReVision+ and DataTweet+ could be easily extended to
predict the number of charts in an image as well.

Our system and findings could be used in different
scenarios—from generating automatic text captions and rec-
ommending chart improvements in data visualisation tools
to informing marketing strategies for brands that use data
visuals to gauge customer engagement. In addition, our
approach, including both the neural architecture and the
method to create labelled data, could form the basis for the
development of visual question answering solutions tailored
to data visualisations, with applications in fact checking and
misinformation online.
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