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Abstract

Cyberbullying is a pervasive problem in online communi-
ties. To identify cyberbullying cases in large-scale social net-
works, content moderators depend on machine learning clas-
sifiers for automatic cyberbullying detection. However, exist-
ing models remain unfit for real-world applications, largely
due to a shortage of publicly available training data and a lack
of standard criteria for assigning ground truth labels. In this
study, we address the need for reliable data using an original
annotation framework. Inspired by social sciences research
into bullying behavior, we characterize the nuanced problem
of cyberbullying using five explicit factors to represent its
social and linguistic aspects. We model this behavior using
social network and language-based features, which improve
classifier performance. These results demonstrate the impor-
tance of representing and modeling cyberbullying as a social
phenomenon.

Introduction

Cyberbullying poses a serious threat to the safety of on-
line communities. The Centers for Disease Control and Pre-
vention (CDC) identify cyberbullying as a “growing public
health problem in need of additional research and preven-
tion efforts” (David-Ferdon and Hertz 2009). Cyberbullying
has been linked to negative mental health outcomes, includ-
ing depression, anxiety, and other forms of self-harm, sui-
cidal ideation, suicide attempts, and difficulties with social
and emotional processing (Miller 2016; Price, Dalgleish,
and others 2010; Sampasa-Kanyinga, Roumeliotis, and Xu
2014). Where traditional bullying was once limited to a spe-
cific time and place, cyberbullying can occur at any hour and
from any location on earth (Chatzakou et al. 2017). Once the
first message has been sent, the attack can escalate rapidly as
harmful content is spread across shared media, compound-
ing these negative effects (Waasdorp and Bradshaw 2015;
Huang and Chou 2010).

Internet users depend on content moderators to flag abu-
sive text and ban cyberbullies from participating in online
communities. However, due to the overwhelming volume
of social media data produced every day, manual human
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moderation is often unfeasible. For this reason, social media
platforms are beginning to rely instead on machine learning
classifiers for automatic cyberbullying detection (Van Hee et
al. 2018).

The research community has developed increasingly com-
petitive classifiers to detect harmful or aggressive content in
text. Despite significant progress in recent years, however,
existing models remain unfit for real-world applications.
This is due, in part, to shortcomings in the training and test-
ing data (Hosseinmardi et al. 2016; Salawu, He, and Lums-
den 2017; Rosa et al. 2019). Most annotation schemes have
ignored the importance of social context, and researchers
have neglected to provide annotators with objective criteria
for distinguishing cyberbullying from other crude messages.

To address the urgent need for reliable data, we provide
an original annotation framework and an annotated Twitter
dataset.1 The key advantages to our labeling approach are:
• Contextually-informed ground truth. We provide an-

notators with the social context surrounding each mes-
sage, including the contents of the reply thread and the
account information of each user involved.

• Clear labeling criteria. We ask annotators to provide
labels for five clear cyberbullying criteria. These criteria
can be combined and adapted for revised definitions of
cyberbullying.

Using our new dataset, we experiment with existing NLP
features and compare results with a newly-proposed set
of features. We designed these features to encode the dy-
namic relationship between a potential bully and victim, us-
ing comparative measures from their relative linguistic and
social network profiles. Additionally, our features have low
computational complexity, so they can scale to internet-scale
datasets, unlike expensive network centrality and clustering
measurements.

Results from our experiments suggest that, although ex-
isting NLP models can reliably detect aggressive language
in text, these lexically-trained classifiers will fall short of
the more subtle goal of cyberbullying detection. With n-
grams and dictionary-based features, classifiers prove un-
able to detect harmful intent, visibility among peers, power

1https://github.com/cjziems/cyberbullying-representations
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Table 1: Datasets built from different related definitions of cyberbullying. For each dataset, we report the size, positive class
balance, inter-annotator agreement, and whether the study incorporated social context in the annotation process.

Work AGGR REP HARM PEER POWER Data Source Size Balance Agreement Context

Al-garadi, Varathan, and Ravana (2016) � � Twitter 10,007 6.0% – �
Chatzakou et al. (2017) � � � � Twitter 9,484 – 0.54 �
Hosseinmardi et al. (2015) � � � Instagram 1,954 29.0% 0.50 �
Huang, Singh, and Atrey (2014) � � Twitter 4,865 1.9% – �
Reynolds, Kontostathis, and Edwards (2011) � � Formspring 3,915 14.2% – �
Rosa et al. (2019) � � � � Formspring 13,160 19.4% – �
Sugandhi et al. (2016) � � Mixed 3,279 12.0% – �
Van Hee et al. (2018) � � AskFM 113,698 4.7% 0.59 �

imbalance, or the repetitive nature of aggression with suf-
ficiently high precision and recall. However, our proposed
feature set improves F1 scores on all four of these social
measures. Real-world detection systems can benefit from
our proposed approach, incorporating the social aspects of
cyberbullying into existing models and training these mod-
els on socially-informed ground truth labels.

Background

Existing approaches to cyberbullying detection generally
follow a common workflow. Data is collected from social
networks or other online sources, and ground truth is estab-
lished through manual human annotation. Machine learning
algorithms are trained on the labeled data using the message
text or hand-selected features. Then results are typically re-
ported using precision, recall, and F1 scores. Comparison
across studies is difficult, however, because the definition
of cyberbullying has not been standardized. Therefore, an
important first step for the field is to establish an objective
definition of cyberbullying.

Defining Cyberbullying

Some researchers view cyberbullying as an extension of
more “traditional” bullying behaviors (Hinduja and Patchin
2008; Olweus 2012; Raskauskas and Stoltz 2007). In one
widely-cited book, the psychologist Dan Olweus defines
schoolyard bullying in terms of three criteria: repetition,
harmful intent, and an imbalance of power (Olweus
1994). He then identifies bullies by their intention to “inflict
injury or discomfort” upon a weaker victim through repeated
acts of aggression.

Social scientists have extensively studied this form of
bullying as it occurs among adolescents in school (Kowal-
ski and Limber 2013; Li 2006). However, experts disagree
whether cyberbullying should be studied as a form of tra-
ditional bullying or a fundamentally different phenomenon
(Kowalski and Limber 2013; Olweus 2012). Some argue
that, although cyberbullying might involve repeated acts of
aggression, this condition might not necessarily hold in all
cases, since a single message can be otherwise forwarded
and publicly viewed without repeated actions from the au-
thor (Slonje, Smith, and Frisén 2013; Waasdorp and Brad-
shaw 2015). Similarly, the role of power imbalance is un-
certain in online scenarios. Power imbalances of physical
strength or numbers may be less relevant, whereas bully
anonymity and the permanence of online messages may be

sufficient to render the victim defenseless (Slonje and Smith
2008).

The machine learning community has not reached a unan-
imous definition of cyberbullying either. They have instead
echoed the uncertainty of the social scientists. Moreover,
some authors have neglected to publish any objective cyber-
bullying criteria or even a working definition for their anno-
tators, and among those who do, the formulation varies. This
disagreement has slowed progress in the field, since classi-
fiers and datasets cannot be as easily compared. Upon re-
view, however, we found that all available definitions con-
tained a strict subset of the following criteria: aggression
(AGGR), repetition (REP), harmful intent (HARM), visibility
among peers (PEER), and power imbalance (POWER). The
datasets built from these definitions are outlined in Table 1.

Existing Sources of Cyberbullying Data

According to Van Hee et al. (2018), data collection is the
most restrictive “bottleneck” in cyberbullying research. Be-
cause there are very few publicly available datasets, some re-
searchers have turned to crowdsourcing using Amazon Me-
chanical Turk or similar platforms.

In most studies to date, annotators labeled individual mes-
sages instead of message threads, ignoring social context
altogether (Al-garadi, Varathan, and Ravana 2016; Huang,
Singh, and Atrey 2014; Nahar et al. 2014; Reynolds, Kon-
tostathis, and Edwards 2011; Singh, Huang, and Atrey 2016;
Sugandhi et al. 2016). Only three of the papers that we re-
viewed incorporated social context in the annotation pro-
cess. Chatzakou et al. (2017) considered batches of time-
sorted tweets called sessions, which were grouped by user
accounts, but they did not include message threads or any
other form of context. Van Hee et al. (2018) presented “orig-
inal conversation[s] when possible,” but they did not explain
when this information was available. Hosseinmardi et al.
(2016) was the only study to label full message reply threads
as they appeared in the original online source.

Modeling Cyberbullying Behavior

A large body of work has been published on cyberbul-
lying detection and prediction, primarily through the use
of natural language processing techniques. Most common
approaches have relied on lexical features such as n-
grams (Hosseinmardi et al. 2016; Van Hee et al. 2018;
Xu et al. 2012), TF-IDF vectors (Dinakar, Reichart, and
Lieberman 2011; Nahar et al. 2013; Sugandhi et al. 2016),
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word embeddings (Zhao, Zhou, and Mao 2016), or pho-
netic representations of messages (Zhang et al. 2016), as
well as dictionary-based counts on curse words, hateful
or derogatory terms, pronouns, emoticons, and punctuation
(Al-garadi, Varathan, and Ravana 2016; Dadvar et al. 2013;
Reynolds, Kontostathis, and Edwards 2011; Singh, Huang,
and Atrey 2016). Some studies have also used message sen-
timent (Singh, Huang, and Atrey 2016; Sugandhi et al. 2016;
Van Hee et al. 2018) or the age, gender, personality, and
psychological state of the message author according to text
from their timelines (Al-garadi, Varathan, and Ravana 2016;
Dadvar et al. 2013). These methods have been reported with
appreciable success as shown in Table 2.

Some researchers argue, however, that lexical features
alone may not adequately represent the nuances of cyberbul-
lying. Hosseinmardi et al. (2015) found that among Insta-
gram media sessions containing profane or vulgar content,
only 30% were acts of cyberbullying. They also found that
while cyberbullying posts contained a moderate proportion
of negative terms, the most negative posts were not consid-
ered cases of cyberbullying by the annotators. Instead, these
negative posts referred to politics, sports, and other domestic
matters between friends (Hosseinmardi et al. 2015).

The problem of cyberbullying cuts deeper than merely
the exchange of aggressive language. The meaning and in-
tent of an aggressive post is revealed through conversation
and interaction between peers. Therefore, to properly distin-
guish cyberbullying from other uses of aggressive or pro-
fane language, future studies should incorporate key indica-
tors from the social context of each message. Specifically,
researchers can measure the author’s status or social advan-
tage, the author’s harmful intent, the presence of repeated
aggression in the thread, and the visibility of the thread
among peers (Hosseinmardi et al. 2015; Rosa et al. 2019;
Salawu, He, and Lumsden 2017).

Since cyberbullying is an inherently social phenomenon,
some studies have naturally considered social network mea-
sures for classification tasks. Several features have been de-
rived from the network representations of the message inter-
actions. The degree and eigenvector centralities of nodes, the
k-core scores, and clustering of communities, as well as the
tie strength and betweenness centralities of mention edges
have all been shown to improve text-based models (Huang,
Singh, and Atrey 2014; Singh, Huang, and Atrey 2016). Ad-
ditionally, bullies and victims can be more accurately iden-
tified by their relative network positions. For example, the
Jaccard coefficient between neighborhood sets in bully and
victim networks has been found to be statistically significant
(Chelmis, Zois, and Yao 2017). The ratio of all messages
sent and received by each user was also significant.

These findings show promising directions for future work.
Social network features may provide the information neces-
sary to reliably classify cyberbullying. However, it may be
prohibitively expensive to build out social networks for each
user due to time constraints and the limitations of API calls
(Yao et al. 2019). For this reason, alternative measurements
of online social relationships should be considered.

In the present study, we leverage prior work by incorpo-
rating linguistic signals into our classifiers. We extend prior

Table 2: State of the Art in Cyberbullying Detection. Here,
results are reported on either the Cyberbullying (CB) class
exclusively or on the entire (total) dataset.

Work Model Precision Recall F1 Class

Zhang et al. (2016) CNN 99.1% 97.0% 98.0% total
Al-garadi, Varathan,
and Ravana (2016) Random Forest 94.1% 93.9% 93.6% total

Nahar et al. (2014) SVM 87.0% 97.0% 92.0% CB
Sugandhi et al.

(2016) SVM 91.0% 91.0% 91.0% total

Soni and Singh
(2018) Naı̈ve Bayes 80.2% 80.2% 80.2% total

Zhao, Zhou, and
Mao (2016) SVM 76.8% 79.4% 78.0% total

Xu et al. (2012) SVM 76.0% 79.0% 77.0% total
Hosseinmardi et al.

(2016) Logistic Regression 78.0% 72.0% 75.0% CB

Yao et al. (2019) CONcISE 69.5% 79.4% 74.1% CB
Van Hee et al. (2018) SVM 73.3% 57.2% 64.3% total

Singh, Huang, and
Atrey (2016) Proposed 82.0% 53.0% 64.0% CB

Rosa et al. (2019) SVM 46.0% - 45.0% CB
Dadvar et al. (2013) SVM 31.0% 15.0% 20.0% CB
Huang, Singh, and

Atrey (2014) Dagging 76.3% - - CB

work by developing a dataset that better reflects the defini-
tions of cyberbullying presented by social scientists, and by
proposing and evaluating a feature set that represents infor-
mation pertaining to the social processes that underlie cyber-
bullying behavior.

Curating a Comprehensive

Cyberbullying Dataset

Here, we provide an original annotation framework and a
new dataset for cyberbullying research, built to unify exist-
ing methods of ground truth annotation. In this dataset, we
decompose the complex issue of cyberbullying into five key
criteria, which were drawn from the social science and ma-
chine learning communities. These criteria can be combined
and adapted for revised definitions of cyberbullying.

Data Collection

We collected a sample of 1.3 million unlabeled tweets from
the Twitter Filter API. Since cyberbullying is a social phe-
nomenon, we chose to filter for tweets containing at least
one “@” mention. To restrict our investigation to origi-
nal English content, we removed all non-English posts and
retweets (RTs), narrowing the size of our sample to 280,301
tweets.

Since aggressive language is a key component of cyber-
bullying (Hosseinmardi et al. 2015), we ran the pre-trained
classifier of Davidson et al. (2017) over our dataset to iden-
tify hate speech and aggressive language and increase the
prevalence of cyberbullying examples 2. This gave us a fil-
tered set of 9,803 aggressive tweets.

We scraped both the user and timeline data for each author
in the aggressive set, as well as any users who were men-
tioned in one of the aggressive tweets. In total, we collected
data from 21,329 accounts. For each account, we saved the

2Without this step, our positive class balance would be pro-
hibitively small. See Appendix 1 for details.
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full user object, including profile name, description, loca-
tion, verified status, and creation date. We also saved a com-
plete list of the user’s friends and followers, and a 6-month
timeline of all their posts and mentions from January 1st

through June 10th, 2019. For author accounts, we extended
our crawl to include up to four years of timeline content.
Lastly, we collected metadata for all tweets belonging to the
corresponding message thread for each aggressive message.

Annotation Task

We presented each tweet in the dataset to three separate an-
notators as a Human Intelligence Task (HIT) on Amazon’s
Mechanical Turk (MTurk) platform. By the time of recruit-
ment, 6,897 of the 9,803 aggressive tweets were accessible
from the Twitter web page. The remainder of the tweets had
been removed, or the Twitter account had been locked or
suspended.

We asked our annotators to consider the full message
thread for each tweet as displayed on Twitter’s web inter-
face. We also gave them a list of up to 15 recent mentions
by the author of the tweet, directed towards any of the other
accounts mentioned in the original thread. Then we asked
annotators to interpret each tweet in light of this social con-
text, and had them provide us with labels for five key cy-
berbullying criteria. We defined these criteria in terms of the
author account (“who posted the given tweet?”) and the tar-
get (“who was the tweet about?” – not necessarily the first
mention). We also stated that “if the target is not on Twit-
ter or their handle cannot be identified” the annotator should
“please write OTHER.” With this framework established, we
gave the definitions for our five cyberbullying criteria as fol-
lows.
1. Aggressive language: (AGGR) Regardless of the au-

thor’s intent, the language of the tweet could be seen
as aggressive. The user either addresses a group or in-
dividual, and the message contains at least one phrase
that could be described as confrontational, derogatory,
insulting, threatening, hostile, violent, hateful, or sexu-
ally abusive.

2. Repetition: (REP) The target user has received at least
two aggressive messages in total (either from the author
or from another user in the visible thread).

3. Harmful intent: (HARM) The tweet was designed to
tear down or disadvantage the target user by causing
them distress or by harming their public image. The tar-
get does not respond agreeably as to a joke or an other-
wise lighthearted comment.

4. Visibility among peers: (PEER) At least one other user
besides the target has liked, retweeted, or responded to
at least one of the author’s messages.

5. Power imbalance: (POWER) Power is derived from au-
thority and perceived social advantage. Celebrities and
public figures are more powerful than common users.
Minorities and disadvantaged groups have less power.
Bullies can also derive power from peer support.

Each of these criteria was represented as a binary label, ex-
cept for power imbalance, which was ternary. We asked “Is

Table 3: Analysis of Labeled Twitter Data

Criterion Positive
Balance

Inter-annotator
Agreement

Cyberbullying
Correlation

aggression 74.8% 0.23 0.22
repetition 6.6% 0.18 0.27

harmful intent 16.1% 0.42 0.68
visibility among peers 30.1% 0.51 0.07

target power 34.3% 0.37 0.11
author power 3.1% 0.10 -0.02
equal power 59.7% 0.22 -0.09

cyberbullying 0.7% 0.18 –

there strong evidence that the author is more powerful than
the target? Is the target more powerful? Or if there is not
any good evidence, just mark equal.” We recognized that an
imbalance of power might arise in a number of different cir-
cumstances. Therefore, we did not restrict our definition to
just one form of power, such as follower count or popularity.

For instructional purposes, we provided five sample
threads to demonstrate both positive and negative examples
for each of the five criteria. Two of these threads are shown
here. The thread in Figure 1a displays bullying behavior that
is targeted against the green user, with all five cyberbully-
ing criteria displayed. The thread includes repeated use of
aggressive language such as “she really fucking tried” and
“she knows she lost.” The bully’s harmful intent is evident
in the victim’s defensive responses. And lastly, the thread is
visible among four peers as three gang up against one, cre-
ating a power imbalance.

The final tweet in Figure 1b shows the importance of con-
text in the annotation process. If we read only this individ-
ual message, we might decide that the post is cyberbullying,
but given the social context here, we can confidently assert
that this post is not cyberbullying. Although it contains the
aggressive phrase “FUCK YOU TOO BITCH”, the author
does not intend harm. The message is part of a joking ex-
change between two friends or equals, and no other peers
have joined in the conversation or interacted with the thread.

After asking workers to review these examples, we gave
them a short 7-question quiz to test their knowledge. Work-
ers were given only one quiz attempt, and they were ex-
pected to score at least 6 out of 7 questions correctly before
they could proceed to the paid HIT. Workers were then paid
$0.12 for each thread that they annotated.

We successfully recruited 170 workers to label all 6,897
available threads in our dataset. They labeled an average of
121.7 threads and a median of 7 threads each. They spent
an average time of 3 minutes 50 seconds, and a median time
of 61 seconds per thread. For each thread, we collected an-
notations from three different workers, and from this data
we computed our reliability metrics using Fleiss’s Kappa for
inter-annotator agreement as shown in Table 3.

We determined ground truth for our data using a 2 out
of 3 majority vote as in Hosseinmardi et al. (2015). If the
message thread was missing or a target user could not be
identified, we removed the entry from the dataset, since later
we would need to draw our features from both the thread
and the target profile. After filtering in this way, we were
left with 5,537 labeled tweets.
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(a) Cyberbullying (b) Not Cyberbullying

a ? t

(c) Downward overlap

a ? t

(d) Upward overlap

a ? t

(e) Inward overlap

a ? t

(f) Outward overlap

a ? t

(g) Bidirectional overlap

Figure 1: Cyberbullying or not. The leftmost thread demonstrates all five cyberbullying criteria. Although the thread in the
middle contains repeated use of aggressive language, there is no harmful intent, visibility among peers, or power imbalance.
Overlap measures. (right) Graphical representation of the neighborhood overlap measures of author a and target t.

Cyberbullying Transcends Cyberaggression

As discussed earlier, some experts have argued that cyber-
bullying is different from online aggression (Hosseinmardi
et al. 2015; Rosa et al. 2019; Salawu, He, and Lumsden
2017). We asked our annotators to weigh in on this is-
sue by asking them the subjective question for each thread:
“Based on your own intuition, is this tweet an example of
cyberbullying?” We did not use the cyberbullying label as
ground truth for training models; we used this label to better
understand worker perceptions of cyberbullying. We found
that our workers believed cyberbullying will depend on a
weighted combination of the five criteria presented in this
paper, with the strongest correlate being harmful intent as
shown in Table 3.

Furthermore, the annotators decided our dataset contained
74.8% aggressive messages as shown in the Positive Bal-
ance column of Table 3. We found that a large majority of
these aggressive tweets were not labeled as “cyberbullying.”
Rather, only 10.5% were labeled by majority vote as cyber-
bullying, and only 21.5% were considered harmful. From
this data, we propose that cyberbullying and cyberaggres-
sion are not equivalent classes. Instead, cyberbullying tran-
scends cyberaggression.

Feature Engineering

We have established that cyberbullying is a complex social
phenomenon, different from the simpler notion of cyberag-
gression. Standard Bag of Words (BoW) features based on
single sentences, such as n-grams and word embeddings,
may thus lead machine learning algorithms to incorrectly
classify friendly or joking behavior as cyberbullying (Hos-
seinmardi et al. 2015; Rosa et al. 2019; Salawu, He, and
Lumsden 2017). To more reliably capture the nuances of
repetition, harmful intent, visibility among peers, and power
imbalance, we designed a new set of features from the social
and linguistic traces of Twitter users. These measures allow
our classifiers to encode the dynamic relationship between

the message author and target, using network and timeline
similarities, expectations from language models, and other
signals taken from the message thread.

For each feature and each cyberbullying criterion, we
compare the cumulative distributions of the positive and
negative class using the two-sample Kolmogorov-Smirnov
test. We report the Kolmogorov-Smirnov statistic D (a nor-
malized distance between the CDF of the positive and nega-
tive class) as well as the p-value with α = 0.05 as our level
for statistical significance.

Text-based Features

To construct realistic and competitive baseline models, we
consider a set of standard text-based features that have been
used widely throughout the literature. Specifically, we use
the NLTK library (Bird, Klein, and Loper 2009) to con-
struct unigrams, bigrams, and trigrams for each labeled mes-
sage. This parallels the work of Hosseinmardi et al. (2016),
Van Hee et al. (2018), and Xu et al. (2012). Following Zhang
et al. (2016), we incorporate counts from the Linguistic In-
quiry and Word Count (LIWC) dictionary to measure the
linguistic and psychological processes that are represented
in the text (Pennebaker, Booth, and Francis 2007). We also
use a modified version of the Flesch-Kincaid Grade Level
and Flesch Reading Ease scores as computed in Davidson et
al. (2017). Lastly, we encode the sentiment scores for each
message using the Valence Aware Dictionary and sEntiment
Reasoner (VADER) of Hutto and Gilbert (2014).

Social Network Features

Network features have been shown to improve text-based
models (Huang and Chou 2010; Singh, Huang, and Atrey
2016), and they can help classifiers distinguish between bul-
lies and victims (Chelmis, Zois, and Yao 2017). These fea-
tures may also capture some of the more social aspects of cy-
berbullying, such as power imbalance and visibility among
peers. However, many centrality measures and clustering
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algorithms require detailed network representations. These
features may not be scalable for real-world applications.
We propose a set of low-complexity measurements that can
be used to encode important higher-order relations at scale.
Specifically, we measure the relative positions of the author
and target accounts in the directed following network by
computing modified versions of Jaccard’s similarity index
as we now explain.

Neighborhood Overlap Let N+(u) be the set of all ac-
counts followed by user u and let N−(u) be the set of all
accounts that follow user u. Then N(u) = N+(u)∪N−(u)
is the neighborhood set of u. We consider five related mea-
surements of neighborhood overlap for a given author a and
target t, listed here.

down(a, t) = |N+(a)∩N−(t)|
|N+(a)∪N−(t)|

up(a, t) = |N−(a)∩N+(t)|
|N−(a)∪N+(t)|

in(a, t) = |N−(a)∩N−(t)|
|N−(a)∪N−(t)|

out(a, t) = |N+(a)∩N+(t)|
|N+(a)∪N+(t)|

bi(a, t) = |N(a)∩N(t)|
|N(a)∪N(t)|

Downward overlap measures the number of two-hop paths
from the author to the target along following relationships;
upward overlap measures two-hop paths in the opposite di-
rection. Inward overlap measures the similarity between the
two users’ follower sets, and outward overlap measures the
similarity between their sets of friends. Bidirectional overlap
then is a more generalized measure of social network sim-
ilarity. We provide a graphical depiction for each of these
features on the right side of Figure 1.

High downward overlap likely indicates that the target is
socially relevant to the author, as high upward overlap indi-
cates the author is relevant to the target. Therefore, when the
author is more powerful, downward overlap is expected to be
lower and upward overlap is expected be higher. This trend
is slight but visible in the cumulative distribution functions
of Figure 2 (a): downward overlap is indeed lower when
the author is more powerful than when the users are equals
(D = 0.143). However, there is not a significant difference
for upward overlap (p = 0.85). We also observe that, when
the target is more powerful, downward and upward overlap
are both significantly lower (D = 0.516 and D = 0.540
respectively). It is reasonable to assume that messages can
be sent to celebrities and other powerful figures without the
need for common social connections.

Next, we consider inward and outward overlap. When the
inward overlap is high, the author and target could have
more common visibility. Similarly, if the outward overlap
is high, then the author and target both follow similar ac-
counts, so they might have similar interests or belong to the
same social circles. Both inward and outward overlaps are
expected to be higher when a post is visible among peers.
This is true of both distributions in Figure 2. The difference
in outward overlap is significant (D = 0.04, p = 0.03),
and the difference for inward overlap is short of significant
(D = 0.04, p = 0.08).

(a) Downward Overlap (b) Upward Overlap

(c) Inward Overlap (d) Outward Overlap

Figure 2: Cumulative Distribution Functions for neighbor-
hood overlap on relevant features. These measures are
shown to be predictive of power imbalance and visibility
among peers.

User-based features We also use basic user account met-
rics drawn from the author and target profiles. Specifically,
we count the friends and followers of each user, their verified
status, and the number of tweets posted within six-month
snapshots of their timelines, as in Al-garadi, Varathan, and
Ravana (2016), Chatzakou et al. (2017), and Hosseinmardi
et al. (2016).

Timeline Features

Here, we consider linguistic features, drawn from both the
author and target timelines. These are intended to capture
the social relationship between each user, their common in-
terests, and the surprise of a given message relative to the
author’s timeline history.

Message Behavior To more clearly represent the social
relationship between the author and target users, we con-
sider the messages sent between them as follows:
- Downward mention count: How many messages has the

author sent to the target?
- Upward mention count: How many messages has the tar-

get sent to the author?
- Mention overlap: Let Ma be the set of all accounts men-

tioned by author a, and let Mt be the set of all accounts
mentioned by target t. We compute the ratio |Ma∩Mt|

|Ma∪Mt| .

- Multiset mention overlap: Let M̂a be the multiset of all
accounts mentioned by author a (with repeats for each
mention), and let M̂t be the multiset of all accounts men-
tioned by target t. We measure |M̂a∩∗M̂t|

|M̂a∪M̂t| where ∩∗ takes
the multiplicity of each element to be the sum of the mul-
tiplicity from M̂a and the multiplicity from M̂b

The direct mention count measures the history of repeated
communication between the author and the target. For harm-
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(a) Downward Mentions (b) Upward Mentions

(c) Mention Overlap (d) Multiset Mention Overlap

Figure 3: Cumulative Distribution Functions for message
behavior on relevant features. These measures are shown
to be indicative of harmful intent and repetition.

ful messages, downward overlap is higher (D = 0.178) and
upward overlap is lower (D = 0.374) than for harmless
messages, as shown in Figure 3. This means malicious au-
thors tend to address the target repeatedly while the target
responds with relatively few messages.

Mention overlap is a measure of social similarity that is
based on shared conversations between the author and the
target. Multiset mention overlap measures the frequency of
communication within this shared space. These features may
help predict visibility among peers, or repeated aggression
due to pile-on bullying situations. We see in Figure 3 that re-
peated aggression is linked to slightly greater mention over-
lap (D = 0.07, p = 0.07), but the trend is significant only
for multiset mention overlap (D = 0.08, p = 0.03).

Timeline Similarity Timeline similarity is used to indi-
cate common interests and shared topics of conversation be-
tween the author and target timelines. High similarity scores
might reflect users’ familiarity with one another, or suggest
that they occupy similar social positions. This can be used
to distinguish cyberbullying from harmless banter between
friends and associates. To compute this metric, we represent
the author and target timelines as TF-IDF vectors �A and �T .
We then take the cosine similarity between the vectors as

cos θ =
�A · �T

‖ �A‖‖�T‖ .

A cosine similarity of 1 means that users’ timelines had
identical counts across all weighted terms; a cosine simi-
larity of 0 means that their timelines did not contain any
words in common. We expect higher similarity scores be-
tween friends and associates.

In Figure 4 (a), we see that the timelines were significantly
less similar when the target was in a position of greater
power (D = 0.294). This is not surprising, since power can
be derived from such differences between social groups. We
do not observe the same dissimilarity when the author was

(a) Timeline Similarity (b) Timeline Similarity

Figure 4: Cumulative Distribution Functions for timeline
similarity on relevant features. These measures are shown
to be predictive of power imbalance and harmful intent.

(a) New Words Ratio (b) Cross Entropy

Figure 5: Cumulative Distribution Functions for language
models on relevant features. These measures are shown to
be predictive of harmful intent.

more powerful (p = 0.58). What we do observe is likely
caused by noise from extreme class imbalance and low inter-
annotator agreement on labels for author power.

Turning to Figure 4 (b), we see that aggressive messages
were less likely to harbor harmful intent if they were sent
between users with similar timelines (D = 0.285). Aggres-
sive banter between friends is generally harmless, so again,
this confirms our intuitions.

Language Models Harmful intent is difficult to measure
in isolated messages because social context determines prag-
matic meaning. We attempt to approximate the author’s
harmful intent by measuring the linguistic “surprise” of a
given message relative to the author’s timeline history. We
do this in two ways: through a simple ratio of new words,
and through the use of language models.

To estimate historical language behavior, we count uni-
gram and bigram frequencies from a 4-year snapshot of the
author’s timeline. Then, after removing all URLs, punctua-
tion, stop words, mentions, and hashtags from the original
post, we take the cardinality of the set unigrams in the post
having zero occurrences in the timeline. Lastly, we divide
this count by the length of the processed message to arrive
at our new words ratio. We can also build a language model
from the bigram frequencies, using Kneser-Ney smoothing
as implemented in NLTK (Bird, Klein, and Loper 2009).
From the language model, we compute the surprise of the
original message m according to its cross-entropy, given
by

H(m) = − 1

N

N∑

i=1

logP (bi)
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Table 4: Feature Combinations

Feature BoW Text User Proposed Combined
n-grams � � �

LIWC, VADER, Flesch-Kincaid � �
Friend/following counts, tweet count, verified � � �

Neighborhood overlap measures � � �
Mention counts and overlaps � � �

Timeline similarity � � �
New words ratio, cross-entropy � � �

Thread visibility features � �
Thread aggression features � �

Table 5: Precision

Criterion BoW Text User Proposed Combined
aggression 82.5% 82.3% 77.1% 78.7% 82.6%

repetition 7.8% 13.4% 7.7% 15.3% 31.7%

harmful intent 29.6% 49.4% 35.8% 34.5% 55.3%

visibility among peers 30.8% 34.3% 34.0% 42.2% 46.8%

author power 1.9% 3.6% 7.6% 9.8% 17.0%

target power 43.5% 51.5% 77.6% 75.2% 77.0%

where m is composed of bigrams b1, b2, . . . , bN , and P (bi)
is the probability of the ith bigram from the language model.

We see in Figure 5 that harmfully intended messages have
a greater density of new words (D = 0.06). This is intuitive,
since attacks may be staged around new topics of conversa-
tion. However, the cross entropy of these harmful messages
is slightly lower than for harmless messages (D = 0.06).
This may be due to harmless jokes, since joking messages
might depart more from the standard syntax of the author’s
timeline.

Thread Features

Finally, we turn to the messages of the thread itself to com-
pute measures of visibility and repeated aggression.

Visibility To determine the public visibility of the author’s
post, we collect basic measurements from the interactions of
other users in the thread. They are as follows.
- Message count: Count the messages posted in the thread
- Reply message count: Count the replies posted in the

thread after the author’s first comment.
- Reply user count: Count the users who posted a reply in

the thread after the author’s first comment.
- Maximum author favorites: The largest number of fa-

vorites the author received on a message in the thread.
- Maximum author retweets: The largest number of

retweets the author received on a message in the thread.

Aggression To detect repeated aggression, we again em-
ploy the hate speech and offensive language classifier of
Davidson et al. (2017). Each message is given a binary label
according to the classifier-assigned class: aggressive (classi-
fied as hate speech or offensive language) or non-aggressive
(classified as neither hate speech nor offensive language).
From these labels, we derive the following features.
- Aggressive message count: Count the messages in the

thread classified as aggressive
- Aggressive author message count: Count the author’s

messages that were classified as aggressive

Table 6: Recall

Criterion BoW Text User Proposed Combined
aggression 77.0% 84.8% 47.8% 51.6% 85.6%

repetition 17.6% 7.3% 49.5% 64.3% 26.2%
harmful intent 40.2% 44.4% 63.4% 67.7% 52.7%

visibility among peers 34.8% 20.4% 47.1% 54.2% 33.7%
author power 6.5% 1.6% 74.1% 80.0% 11.9%
target power 49.4% 43.3% 73.3% 80.8% 71.1%

Table 7: F1 Scores

Criterion BoW Text User Proposed Combined
aggression 79.7% 83.5% 59.0% 62.3% 84.1%

repetition 10.8% 9.4% 13.3% 24.7% 28.7%

harmful intent 34.1% 46.7% 38.7% 45.7% 53.8%

visibility among peers 32.7% 25.5% 39.5% 47.4% 45.5%
author power 2.9% 2.2% 13.7% 17.5% 14.0%
target power 46.2% 47.0% 75.3% 77.9% 73.9%

- Aggressive user count: Of the users who posted a reply
in the thread after the author first commented, count how
many had a message classified as aggressive

Experimental Evaluation

Using our proposed features from the previous section and
ground truth labels from our annotation task, we trained a
separate Logistic Regression classifier for each of the five
cyberbullying criteria, and we report precision, recall, and
F1 measures over each binary label independently. We aver-
aged results using five-fold cross-validation, with 80% of the
data allocated for training and 20% of the data allocated for
testing at each iteration. To account for the class imbalance
in the training data, we used the synthetic minority over-
sampling technique (SMOTE) (Chawla et al. 2002). We did
not over-sample testing sets, however, to ensure that our tests
better match the class distributions obtained as we did by
pre-filtering for aggressive directed Twitter messages.

We compare our results across the five different feature
combinations given in Table 4. Note that because we do not
include thread features in the User set, it can be used for
cyberbullying prediction and early intervention. The Pro-
posed set can be used for detection, sinct it is a collection of
all newly proposed features, including thread features. The
Combined adds these to the baseline text features.

The performance of the different classifiers is summarized
in Tables 5, 6, and 7. Here, we see that Bag of Words and
text-based methods performed well on the aggressive lan-
guage classification task, with an F1 score of 83.5%. This
was expected and the score aligns well with the success of
other published results of Table 2.

Cyberbullying detection is more complex than simply
identifying aggressive text, however. We find that these same
baseline methods fail to reliably detect repetition, harm-
ful intent, visibility among peers, and power imbalance, as
shown by the low recall scores in Table 6. We conclude that
our investigation of socially informed features was justified.

Our proposed set of features beats recall scores for lexi-
cally trained baselines in all but the aggression criterion. We
also improve precision scores for repetition, visibility among
peers, and power imbalance. When we combine all features,
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we see our F1 scores beat baselines for each criterion. This
demonstrates the effectiveness of our approach, using lin-
guistic similarity and community measurements to encode
social characteristics for cyberbullying classification.

Similar results were obtained by replacing our logistic re-
gression model with any of a random forest model, support
vector machine (SVM), AdaBoost, or Multilayer Perceptron
(MLP). We report all precision, recall, and F1 scores in Ap-
pendix 2, Tables 9-20. We chose to highlight logistic regres-
sion because it can be more easily interpreted. As a result,
we can identify the relative importance of our proposed fea-
tures. The feature weights are also given in Appendix 2, Ta-
bles 21-25. There we observe a trend. The aggressive lan-
guage and repetition criteria are dominated by lexical fea-
tures; the harmful intent is split between lexical and histor-
ical communication features; and the visibility among peers
and target power criteria are dominated by our proposed so-
cial features.

Although we achieve moderately competitive scores in
most categories, our classifiers are still over-classifying cy-
berbullying cases. Precision scores are generally much lower
than recall scores across all models. To reduce our misclas-
sification of false positives and better distinguish between
joking or friendly banter and cyberbullying, it may be nec-
essary to mine for additional social features. Overall, we
should work to increase all F1 scores to above 0.8 before
we can consider our classifiers ready for real-world applica-
tions (Rosa et al. 2019).

Discussion

Limitations Our study focuses on the Twitter ecosystem
and a small part of its network. The initial sampling of
tweets was based on a machine learning classifier of ag-
gressive English language. This classifier has an F1 score
of 0.90 (Davidson et al. 2017). Even with this filter, only
0.7% of tweets were deemed by a majority of MTurk work-
ers as cyberbullying (Table 3). This extreme class imbalance
can disadvantage a wide range of machine learning mod-
els. Moreover, the MTurk workers exhibited only moderate
inter-annotator agreement (Table 3). We also acknowledge
that notions of harmful intent and power imbalance can be
subjective, since they may depend on the particular conven-
tions or social structure of a given community. For these rea-
sons, we recognize that cyberbullying still has not been un-
ambiguously defined. Moreover, their underlying constructs
are difficult to identify. In this study, we did not train work-
ers to recognize subtle cues for interpersonal popularity, nor
the role of anonymity in creating a power imbalance.

Furthermore, because we lack the authority to define cy-
berbullying, we cannot assert a two-way implication be-
tween cyberbullying and the five criteria outlined here. It
may be possible for cyberbullying to exist with only one
criterion present, such as harmful intent. Our five criteria
also might not span all of the dimensions of cyberbullying.
However, they are representative of the literature in both the
social science and machine learning communities, and they
can be used in weighted combinations to accommodate new
definitions.

The main contribution of our paper is not that we solved
the problem of cyberbullying detection. Instead, we have ex-
posed the challenge of defining and measuring cyberbully-
ing activity, which has been historically overlooked in the
research community.

Future Directions Cyberbullying detection is an increas-
ingly important and yet challenging problem to tackle. A
lack of detailed and appropriate real-world datasets stymies
progress towards more reliable detection methods. With cy-
berbullying being a systemic issue across social media plat-
forms, we urge the development of a methodology for data
sharing with researchers that provides adequate access to
rich data to improve on the early detection of cyberbully-
ing while also addressing the sensitive privacy issues that
accompany such instances.

Conclusion

In this study, we produced an original dataset for cyberbul-
lying detection research and an approach that leverages this
dataset to more accurately detect cyberbullying. Our label-
ing scheme was designed to accommodate the cyberbullying
definitions that have been proposed throughout the literature.
In order to more accurately represent the nature of cyberbul-
lying, we decomposed this complex issue into five represen-
tative characteristics. Our classes distinguish cyberbullying
from other related behaviors, such as isolated aggression or
crude joking. To help annotators infer these distinctions, we
provided them with the full context of each message’s reply
thread, along with a list of the author’s most recent mentions.
In this way, we secured a new set of labels for more reliable
cyberbullying representations.

From these ground truth labels, we designed a new set
of features to quantify each of the five cyberbullying crite-
ria. Unlike previous text-based or user-based features, our
features measure the relationship between a message author
and target. We show that these features improve the perfor-
mance of standard text-based models. These results demon-
strate the relevance of social-network and language-based
measurements to account for the nuanced social characteris-
tics of cyberbullying.

Despite improvements over baseline methods, our classi-
fiers have not attained the high levels of precision and recall
that should be expected of real-world detection systems. For
this reason, we argue that the challenging task of cyberbul-
lying detection remains an open research problem.
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Appendix 1: Analysis of the Real-World Class

Distribution for Cyberbullying Criteria

To understand the real-world class distribution for the cy-
berbullying criteria, we randomly selected 222 directed En-
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glish tweets from an unbiased sample of drawn from the
Twitter Decahose stream across the entire month of Octo-
ber 2016. Using the same methodology given in the paper,
we had these tweets labeled three times each on Amazon
Mechanical Turk. Again, ground truth was determined using
2 out of 3 majority vote. Upon analysis, we found that the
positive class balance was prohibitively small, especially for
repetition, harmful intent, visibility among peers, and author
power, which were all under 5%.

Table 8: Analysis of Unfiltered Decahose Data

Criterion Positive
Balance

Inter-annotator
Agreement

Cyberbullying
Correlation

aggression 6.3% 0.23 0.68
repetition 0.9% 0.04 0.46

harmful intent 1.4% 0.31 0.75
visibility among peers 0.17% 0.51 0.11

target power 22.5% 0.23 0.11
author power 3.6% 0.04 0.06
equal power 64.7% 0.15 -0.14

cyberbullying 2.7% 0.25 -

Appendix 2: Model Evaluation

For the sake of comparison, we provide precision, recall,
and F1 scores for five different machine learning models: k-
nearest neighbors (KNN), random forest, support vector ma-
chine (SVM), AdaBoost, and Multilayer Perceptron (MLP).
Then we provide feature weights for our logistic regression
model trained on each of the five cyberbullying criteria.

Table 9: Random Forest Precision

Criterion BoW Text User Proposed Combined
aggression 77.6% 80.1% 78.3% 78.7% 79.7%
repetition 6.5% 6.8% 7.7% 16.1% 10.8%

harmful intent 18.4% 28.1% 33.2% 33.4% 43.1%

visibility among peers 28.7% 32.7% 34.8% 42.8% 35.1%
target power 39.3% 43.3% 77.9% 74.5% 69.6%

Table 10: SVM Precision

Criterion BoW Text User Proposed Combined
aggression 84.1% 88.1% 77.4% 79.2% 86.6%
repetition 6.7% 7.0% 6.9% 16.7% 20.1%

harmful intent 17.9% 21.7% 33.7% 34.4% 30.5%
visibility among peers 29.8% 30.6% 33.9% 40.2% 40.9%

target power 36.2% 39.8% 75.4% 71.3% 47.8%

Table 11: AdaBoost Precision

Criterion BoW Text User Proposed Combined
aggression 82.6% 81.6% 77.0% 77.5% 81.6%
repetition 7.8% 9.0% 7.3% 16.6% 25.8%

harmful intent 29.1% 46.4% 34.3% 39.9% 60.0%

visibility among peers 30.5% 32.9% 35.9% 45.8% 46.1%

target power 42.5% 46.5% 78.0% 78.2% 77.9%

Table 12: MLP Precision

Criterion BoW Text User Proposed Combined
aggression 82.8% 78.8% 76.7% 77.4% 78.3%
repetition 7.7% 8.7% 8.6% 16.9% 19.6%

harmful intent 27.4% 42.8% 37.3% 38.4% 46.8%

visibility among peers 30.1% 34.0% 34.3% 41.6% 38.5%
target power 39.6% 45.2% 74.3% 72.0% 68.6%

Table 13: Random Forest Recall

Criterion BoW Text User Proposed Combined
aggression 56.4% 78.5% 43.7% 45.3% 76.2%
repetition 36.2% 24.9% 46.3% 64.7% 29.9%

harmful intent 42.4% 35.1% 78.4% 78.2% 53.5%
visibility among peers 48.1% 30.6% 50.5% 49.9% 32.5%

target power 60.1% 38.0% 79.0% 81.9% 76.7%

Table 14: SVM Recall

Criterion BoW Text User Proposed Combined
aggression 9.6% 26.0% 50.4% 55.7% 31.2%
repetition 94.0% 83.0% 38.9% 48.5% 52.1%

harmful intent 67.6% 76.7% 70.3% 68.5% 74.3%
visibility among peers 86.8% 94.0% 53.3% 58.1% 33.2%

target power 92.6% 46.0% 72.8% 80.1% 92.7%

Table 15: AdaBoost Recall

Criterion BoW Text User Proposed Combined
aggression 75.0% 86.4% 65.9% 77.4% 86.3%
repetition 23.8% 4.1% 26.8% 31.2% 17.8%

harmful intent 44.4% 37.8% 57.0% 52.8% 50.8%
visibility among peers 41.0% 15.4% 42.8% 43.1% 32.0%

target power 56.0% 39.4% 81.8% 81.0% 75.6%

Table 16: MLP Recall

Criterion BoW Text User Proposed Combined
aggression 64.1% 86.5% 65.5% 68.0% 85.6%
repetition 26.8% 6.8% 22.5% 27.1% 12.6%

harmful intent 51.0% 33.3% 57.0% 57.0% 37.2%
visibility among peers 51.6% 23.5% 45.6% 50.2% 26.5%

target power 61.6% 37.5% 76.5% 76.2% 65.6%

Table 17: Random Forest F1

Criterion BoW Text User Proposed Combined
aggression 65.2% 79.3% 56.0% 57.5% 77.9%
repetition 11.0% 10.6% 13.2% 25.8% 15.8%

harmful intent 25.6% 31.1% 46.6% 46.8% 47.7%

visibility among peers 35.7% 30.8% 41.2% 46.1% 33.6%
target power 47.4% 39.9% 78.4% 78.0% 72.8%

Table 18: SVM F1

Criterion BoW Text User Proposed Combined
aggression 16.9% 37.7% 60.9% 65.4% 42.1%
repetition 12.6% 13.0% 11.8% 24.8% 28.9%

harmful intent 28.1% 33.8% 45.6% 45.8% 43.3%
visibility among peers 44.3% 46.1% 41.4% 47.4% 28.6%

target power 52.0% 35.8% 74.1% 75.4% 63.1%
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Table 19: AdaBoost F1

Criterion BoW Text User Proposed Combined
aggression 78.6% 83.9% 71.0% 77.5% 83.9%

repetition 11.7% 5.6% 11.5% 21.6% 20.9%
harmful intent 35.1% 41.6% 42.8% 45.4% 55.0%

visibility among peers 34.9% 21.0% 39.1% 44.3% 37.8%
target power 48.3% 42.7% 79.8% 79.6% 76.7%

Table 20: MLP F1

Criterion BoW Text User Proposed Combined
aggression 72.2% 82.5% 70.7% 72.4% 81.8%
repetition 12.0% 7.6% 12.4% 20.7% 15.2%

harmful intent 35.7% 37.3% 45.0% 45.8% 41.3%
visibility among peers 38.0% 27.7% 39.2% 45.5% 31.4%

target power 48.2% 41.0% 75.4% 74.0% 67.0%

Table 21: Top Absolute Weights for Aggressive Language

Rank Feature Weight
1 affect (LIWC) -1.34
2 sexual (LIWC) 1.07
3 negemo (LIWC) 0.90
4 maximum author retweets 0.86
5 relativ (LIWC) -0.75
6 bio (LIWC) -0.69
7 posemo (LIWC) 0.66
8 num chars -0.64
9 space (LIWC) 0.52

10 upward overlap 0.51

Table 22: Top Absolute Weights for Repetition Features

Rank Feature Weight
1 negemo (LIWC) 1.40
2 author verified status -1.32
3 affect (LIWC) -1.24
4 cogmech (LIWC) -0.96
5 relativ (LIWC) -0.89
6 posemo (LIWC) 0.80
7 social (LIWC) 0.77
8 aggressive user count 0.63
9 upward overlap 0.62

10 number of unique terms 0.61

Table 23: Top Absolute Weights for Harmful Intent

Rank Feature Weight
1 number of words -1.70
2 number of unique terms 1.41
3 bio (LIWC) -1.05
4 funct (LIWC) 0.95
5 author follower count -0.90
6 present (LIWC) 0.83
7 you (LIWC) 0.83
8 message count 0.79
9 upward mention count -0.71

10 verb (LIWC) -0.67

Table 24: Top Absolute Weights for Visibility Among Peers

Rank Feature Weight
1 author follower count 6.29
2 maximum author retweets -1.63
3 maximum author favorites 1.46
4 aggressive user count -1.36
5 number of words -1.16
6 reply user count 1.03
7 number of unique terms 1.02
8 reply message count -0.91
9 message count 0.77

10 affect (LIWC) -0.67

Table 25: Top Absolute Weights for Target Power

Rank Feature Weight
1 target follower count 2.28
2 author follower count -1.67
3 bidirectional overlap -1.22
4 target verified status 1.20
5 upward overlap -1.11
6 downward overlap 1.04
7 relativ (LIWC) 0.76
8 reply user count -0.69
9 space (LIWC) -0.68

10 message count -0.63
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