
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

TOAD-GAN: Coherent Style Level Generation from a Single Example

Maren Awiszus, Frederik Schubert, Bodo Rosenhahn
Institut für Informationsverarbeitung

Leibniz University
Hanover, Germany

{awiszus, schubert, rosenhahn}@tnt.uni-hannover.de

Abstract

In this work, we present TOAD-GAN (Token-based One-
shot Arbitrary Dimension Generative Adversarial Network),
a novel Procedural Content Generation (PCG) algorithm that
generates token-based video game levels. TOAD-GAN fol-
lows the SinGAN architecture and can be trained using only
one example. We demonstrate its application for Super Mario
Bros. levels and are able to generate new levels of similar
style in arbitrary sizes. We achieve state-of-the-art results in
modeling the patterns of the training level and provide a com-
parison with different baselines under several metrics. Addi-
tionally, we present an extension of the method that allows the
user to control the generation process of certain token struc-
tures to ensure a coherent global level layout. We provide this
tool to the community to spur further research by publishing
our source code.

1 Introduction

Level design is a key component of the game creation pro-
cess. The designer has to consider aspects like physics,
playability and difficulty during the creation process. This
task can require a lot of time for even a single level.

Procedural Content Generation (PCG) has the potential
to assist the designer by automating parts of the process.
Early works in PCG used the co-occurrence of tokens (e.g.
a single enemy or ground block) in existing game lev-
els to identify patterns (Dahlskog and Togelius 2012) and
combined them using simple statistical models (Snodgrass
and Ontanón 2013). The quality of these algorithms criti-
cally depends on the extracted patterns and co-occurrence
relations, which have to be defined manually. Recent ap-
proaches used PCG via Machine Learning (PCGML) (Sum-
merville et al. 2018) to learn the patterns and relations
from the data automatically (Summerville and Mateas 2016;
Volz et al. 2020). However, simply applying them to the level
generation task comes with several drawbacks. The Machine
Learning algorithms need many examples to extract the pat-
terns. As manual level design is a costly process, there is
usually a very limited number available for training. Even if
the amount is sufficient, the generated levels are mixtures of
all example levels and do not have a coherent style. Finally,

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One single level

Random levels with arbitrary sizes

Figure 1: Generated levels based on Super Mario Bros. level
1-2. The new levels can be generated in any size and pre-
serve the token distribution of the original level, while also
containing new, previously unseen patterns.

most recent PCGML algorithms are black boxes and do not
allow for high-level control of their generated content.

In this paper, we introduce TOAD-GAN as a solution to
these problems. Our work is inspired by SinGAN (Shaham,
Dekel, and Michaeli 2019), a recent Generative Adversarial
Network (GAN) (Goodfellow et al. 2014) architecture that
learns a generative model given only one example image.
This is achieved by learning patch-based features on differ-
ent spatial scales. Since SinGAN was developed for natu-
ral RGB images, it is unable to generate convincing video
game levels that are based on 2D token maps. Our method,
on the other hand, was developed exactly with this purpose
in mind. As shown in Fig. 1, TOAD-GAN is able to generate
new levels in the style of one given example level.

In summary, our contributions are:

• With TOAD-GAN, we present a novel generative model
that allows for level generation following the one-shot
training approach of SinGAN.

• We introduce a downsampling algorithm for token-based
levels specifically designed to preserve important tokens.

• An extension of our method enables authoring of the
global level structure. We show this for example levels
generated for Super Mario Kart.

• We visualise our generated content in a latent space to

10



compare it with the original levels.

• We enable further research by publishing our source
code.1

2 Related Work

Generating Super Mario Bros. (SMB) levels was one of the
first challenges proposed to the PCG community (Shaker et
al. 2011). Since its introduction, many approaches were pre-
sented that tried to capture the patterns from the original lev-
els and combine them in novel ways. This section only cov-
ers a selection, due to the vast amount of PCG approaches.
For a review of pattern-based level generators for SMB see
Khalifa et al. (2019).

Super Mario Bros. Level Generation

Dahlskog and Togelius (2012) identified and analyzed pat-
terns with different themes, such as enemies, gaps or stairs.
They assessed the difficulty of the patterns to human players
and outlined how those patterns could be combined and var-
ied to create new levels. In their continued work (Dahlskog
and Togelius 2014), they additionally defined micro- (verti-
cal slices) and macro-patterns (sequences of patterns). Us-
ing an Evolutionary Algorithm (EA), they generated levels
by selecting micro-patterns, with a fitness function based on
the occurrence of patterns and macro-patterns.

Search-based PCG (Togelius et al. 2011) was applied
to SMB by Summerville, Philip, and Mateas (2015). The
authors used Monte Carlo Tree Search (MCTS) (Coulom
2006) to guide the sampling process from a Markov Chain
model of tokens. The reward of the MCTS was computed
based on the solvability, number of gaps, number of enemies
and rewards (coins or power-ups).

Neural Networks for PCG

Recent PCGML approaches that use Neural Networks have
also been applied extensively to the SMB level generation
problem. Hoover, Togelius, and Yannakis (2015) trained a
neural network with an EA to generate new levels. The net-
work predicts the height of a token in a level slice, given the
heights of all tokens in the previous slices.

Summerville and Mateas (2016) trained their model on
levels by predicting the tokens sequentially. They used
a neural network architecture based on Long Short-Term
Memory (LSTM) cells (Hochreiter and Schmidhuber 1997)
to predict the next token, given a context of previous tokens
in the unrolled level.

Recently, GANs were used to create SMB levels. In (Volz
et al. 2018) the authors train a GAN on slices of the original
levels and use an EA to search the space of generated levels
by scoring the fraction of enemy and ground tokens.

A similar approach was taken by Torrado et al. (2019)
who used the Self-Attention GAN (SAGAN) (Zhang et al.
2019) architecture and conditioned their generation process
on a feature vector that contained the targeted token distri-
butions of the generated levels. This conditioning increased
the variability of their generated content.

1https://github.com/Mawiszus/TOAD-GAN

Figure 2: Example of the mode collapse of a WGAN-GP
trained solely on 16 × 16 slices from SMB level 1-1. This
slice size is chosen because square images are preferable for
GANs and 16 is the default height of all SMB levels. The
generator stops creating anything but the ground and sky.

3 Method

Limited training data is one of the key problems of PCGML
algorithms (Torrado et al. 2019; Bontrager and Togelius
2020). Therefore, the goal of our work is the generation
of new levels for SMB from very little training data. With
TOAD-GAN, we take this problem to the extreme regime of
learning from only one single training level. Similar to other
recent publications (Volz et al. 2018; Torrado et al. 2019;
Volz et al. 2020), TOAD-GAN is based on the GAN archi-
tecture.

Generative Adversarial Networks

GANs are able to generate samples from a given training
distribution (Goodfellow et al. 2014). They consist of two
adversaries: The generator G maps random noise vectors z
to samples x̃, which the discriminator D is trying to distin-
guish from real samples x. In the end, G produces x̃ that
are indistinguishable from real x. However, this process can
become unstable. In the low-data regime, the discriminator
might be able to memorize the distribution of real samples
and stops providing useful gradients for the generator. Many
different extensions to the basic architecture were proposed
to stabilize the training process, for example minimizing the
Wasserstein distance (Arjovsky, Chintala, and Bottou 2017)
and penalizing the norm of the gradients of the discrimina-
tor (Gulrajani et al. 2017). The resulting Wasserstein GAN
with Gradient Penalty (WGAN-GP) is able to model a vari-
ety of distributions, but it is still prone to failures like mode
collapse. This is the case when the generator produces sam-
ples that contain only a few features (or modes) of the data
which the discriminator cannot classify correctly. Then, the
generator will never learn to produce the missed modes. See
Fig. 2 for an example.

Even though GANs have shown promising results, their
success depends on the availability of a lot of samples from
the real distribution. Additionally, long range correlations in
an image can only be modeled by convolutional GANs with
many layers. For longer levels, this increases the number of
parameters that have to be optimized, which further compli-
cates the training process.

SinGAN

SinGAN (Shaham, Dekel, and Michaeli 2019) is a novel
GAN architecture that enables learning a generative model
from a single image. This is achieved by using a cascade
of generators and discriminators that act on patches from
differently scaled versions of the image. The weights of
the models at each scale are initialized with those from the

11



GN-1

G0

GN

...
DN-1

D0

DN

...
Tr

ai
ni

ng
 

Pr
og

re
ss

io
n

Multi-scale Patch
Generators

Multi-scale Patch
Discriminators

Fake Real

H
ie

ra
rc

hy
-a

w
ar

e
D

ow
ns

am
pl

in
g

Figure 3: Generation process of TOAD-GAN on Super Mario Bros. level 1-2. The architecture is adapted from SinGAN (cf.
Fig. 4 of (Shaham, Dekel, and Michaeli 2019)). We use a downsampling method on a one-hot encoded version of the level
that preserves small but important structures which would be lost when performing simple spatial downsampling. The upwards
arrow between the scales represents bilinear upsampling.

scale below. This initialization bootstraps the training of the
GANs in upper scales and stabilizes the training process.

To generate a new sample, a noise map zN of arbitrary
size is fed into the generator GN at the lowest scale. At each
subsequent scale N < n ≤ 0, the output x̃n+1 of the pre-
vious generator Gn+1 is up-sampled (↑) and added to a new
random noise map zn ∼ N (0, σ2). The variance σ2 con-
trols how much information from the lower scales is passed
through to the upper layers of SinGAN. Both are used by the
generator Gn to produce an output x̃n for the current scale

x̃n = x̃n+1 ↑ +Gn(zn + x̃n+1 ↑). (1)

The discriminators receive either a scaled real image or the
output of their respective generator. Generator and discrim-
inator only act on patches and are fully-convolutional. This
means that the size of the output is determined by the size of
the initial noise map at the lowest scale.

For a more in-depth explanation please refer to the origi-
nal SinGAN paper by Shaham, Dekel, and Michaeli (2019).

TOAD-GAN

Fig. 3 shows the pipeline of TOAD-GAN for the generation
of SMB levels. There are 15 original SMB levels provided
by the Video Game Level Corpus (Summerville et al. 2016),
each with different characteristics. The levels are placed in
three worlds (overworld, underground, floating platforms)
with different global structure and token patterns. For train-
ing, one level is sampled down to N different scales. We
choose N such that the receptive field of the convolutional
filters in our generators and discriminators is able to cover at
minimum half of the height of the levels at the lowest scale.
This ensures that larger structures are modeled correctly, but
allows for variation in their global position.

Interpreting each token as one pixel of an image and then
downsampling naively results in lost information, as alias-
ing would make important tokens disappear at lower scales.
To keep most of the information from the original level, we
propose a downsampling method which preserves impor-
tant tokens. This method is inspired by TF-IDF weighting
(Manning, Raghavan, and Schütze 2008) in Natural Lan-
guage Processing where the importance of a term is defined
by its term frequency multiplied by its inverse document fre-

Table 1: Token Hierarchy

Group Tokens

0 Sky
1 Ground
2 Pyramid
3 Platforms , , , ,
4 Pipes , +
5 Enemies , , ,
6 Special Enemies , , , ,
7 Special Blocks , + , + , +
8 Hidden Blocks + , + , + , +

quency. In our case, terms are tokens and documents are lev-
els. Tokens that occur often and in multiple levels, like the
sky and ground blocks, are of lower importance than rare to-
kens, such as the hidden and special blocks. The complete
token hierarchy can be found in Tab. 1.

The steps of this process are as follows. First, bilinear
downsampling is used on the one-hot encoded training level
to create the base levels of the chosen scales. For each pixel
in each scale, the tokens with a value greater than zero are se-
lected. From that list, the tokens with the highest rank in our
hierarchy are kept and the remaining tokens are set to zero.
Finally, a Softmax is applied over all channels per pixel. In
Fig. 3 on the right, two downsampled versions of level 1-2
can be seen. Later, we also need to sample the outputs on
lower scales up. For this we use bilinear up-sampling.

On natural images, SinGAN uses zero-centered gaussian
spatial noise that is constant over all color channels for a
given pixel, i.e. it only changes the brightness of that pixel.
This places a prior on the hue of the up-sampled pixels and
increases the similarity of the generated samples between
the different scales. In our case, the channels represent the
tile types. Because these are independent from each other,
we apply the noise to all channels individually.

TOAD-GAN can be extended to perform level authoring
by injecting a predefined input into the generator cascade.
The generators fill in the details and produce a sample which

12



Overworld

(a) 1-1 (original) (b) 6-1 (original)

(c) G 1-1 (ours) (d) G 6-1 (ours)

Underground

(e) 1-2 (original) (f) 4-2 (original)

(g) G 1-2 (ours) (h) G 4-2 (ours)

Floating Platforms

(i) 1-3 (original) (j) 3-3 (original)

(k) G 1-3 (ours) (l) G 3-3 (ours)

Baselines

(m) Togelius and Dahlskog (n) Shaker et al.

(o) Green et al. (p) Volz et al.

Figure 4: Example levels generated by TOAD-GAN for the
three different level types found in Super Mario Bros. in
comparison to other generators. TOAD-GAN is able to cap-
ture the style of the level it was trained on.

follows the structure of the injected input but has a similar
style as the training sample. This application is particularly
interesting for PCG as the designer can describe a desired
level or layout for a given token and the generators create
variants of it. In our experiments, we inject a new, differently
structured map for a specific token after the very first gen-
eration step. This basic structure is preserved and expanded
upon by the following generator steps, which results in a
level with the desired structure that consists of the patterns
learned by the generators.

4 Experiments

Our experiments are split into two parts. First, we perform
a qualitative evaluation of the generated levels by present-
ing a number of samples to highlight capabilities of our
approach. Then, our generated levels are assessed with re-
gards to their Tile Pattern KL-Divergence (TPKL-Div) (Lu-

cas and Volz 2019) and visualised using an embedding of
the level slices that is inspired by the Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017). In the second part, we show
the generality of TOAD-GAN by applying it to Super Mario
Kart and present an example of level authoring.

We use the same hyperparameters for all experiments.
The samples were generated at scales 0.5, 0.75, 0.88 and 1.0
of the original training sample size. The remaining hyper-
parameters and specific architectures will be published with
our source code.

Level Generation Evaluation

Qualitative Examples In this experiment, TOAD-GAN is
trained on each of the levels provided by the SMB bench-
mark. Fig. 4 shows randomly generated samples for lev-
els of different types. To increase comparability, all levels
were cut (others), or generated (ours) to the same length.
The style of our generated samples matches that of the level
they were trained on. For example, the hidden 1-Up block
in (b) is placed very similarly in (d). However, the patterns
in our samples are combined differently than in their train-
ing level (e.g. the three small platforms with coins from (j)
are transformed to different heights in (l)). All this while the
general structure of the generated levels is similar to a SMB
level. We tested the validity of our generated content using
the A* agent by Baumgarten (Togelius, Karakovskiy, and
Baumgarten 2010), who was able to win 65% of randomly
sampled levels compared to the 52% of the original levels
(Green et al. 2020).

While we focus on learning one generator for one level,
other methods create one for all training levels. The levels
(m-p) are some example results of such generators. In them,
different kinds of levels are mixed (e.g. pyramids are created
on floating platforms) and the level style is not captured. The
levels (o) and (p) depict recognizable overworld levels, how-
ever the sample cut from (o) was trained on 4-2 and should
therefore be more similar to an underground level. The clos-
est to a convincing overworld level is (p) which was also cre-
ated using a GAN-based approach (Volz et al. 2018). How-
ever, this method relies on small samples that are stitched
together and can result in repeating patterns.

Tile Pattern KL-Divergence We use the TPKL-Div by
Lucas and Volz (2019) to evaluate the similarity of our gen-
erated patterns to the originals. Fig. 5 shows the results for
all original SMB levels. As expected, the values on the main
diagonal, where the generated samples are compared to the
level they were trained with, are very small. This indicates
that TOAD-GAN is able to model the original pattern dis-
tributions for any type of level. Also noticeable are spots
in the matrix where a very low value occurs for a different
level than the one trained on. This happens because these
levels are of a similar style. For example, levels 1-3, 3-3, 5-
3, and 6-3 are all levels with floating platforms, as shown in
Fig. 4(i)-(l).

Tab. 2 shows our resulting divergences compared to those
reported by Lucas and Volz (2019) and Green et al. (2020).
For our results, we computed the mean 2 × 2, 3 × 3, and
4 × 4 pattern divergences with w = 1.0. As we train 15

13



Table 2: Average Tile Pattern KL-Divergence

Algorithm TPKL-Div.

ELSGAN 2 1.58
GAN 2 1.70
ETPKLDiv 3x3 2 0.88
Evolution World 3 1.70
TOAD-GAN (ours) 0.33

Figure 5: Mean Tile-Pattern-KL-Divergence between 100
generated levels and the original levels. Values are averaged
over 2× 2, 3× 3 and 4× 4 patterns. Each row represents a
TOAD-GAN that was trained on the labelled SMB level.

separate generators, we average their values to get the result
in Tab. 2. We generated 1000 sample levels with a size of
200× 16 tokens for each generator. On average, levels gen-
erated by TOAD-GAN produce a lower and therefore better
TPKL-Div. However, as the TPKL-Div measures only the
differences for patterns already present in the original level,
newly generated patterns are not taken into account. Visual
inspection of the generated levels (compare Figs. 1 and 4)
indicates that existing patterns are not only reproduced, but
combined in novel ways and new patterns are generated.

Fig. 2 indicates that GANs tend to produce very similar
or even the same output. We tested the variability of our
generated content by computing the uniqueness of struc-
tures in our generated samples. For that, we randomly picked
100000 square 16 × 16 slices evenly from our previously
generated samples and found that an average of 90.62% of
them were unique.

2Results by Lucas and Volz (2019), on level 1-1 averaged over
2× 2, 3× 3, and 4× 4 patterns with w = 1.0

3Results by Green et al. (2020), averaged over level 1-1, 4-2
and 6-1, only 3× 3 patterns

Level Embeddings Even though the TPKL-Div captures
some aspects of the similarities between SMB levels, it is
limited to patterns of fixed sizes. We propose a new method
that additionally results in an easily interpretable visualiza-
tion. Unlike the TPKL-Div, our distance metric is indepen-
dent of the size of the patterns. Similar to FID, we train a
convolutional classifier c on slices s of the original levels to
predict the level they are from.

level ∈ argmax c(s) = argmaxWφ(s) + b (2)

The slice representation in the penultimate layer φ(s) of the
classifier is a vector of non-linear features that is mapped
linearly to the predicted level.

In Fig. 6(a), we visualize the distribution of these repre-
sentations by projecting them to two dimensions with the
Universal Manifold Approximation and Projection (UMAP)
(McInnes, Healy, and Melville 2018) method. This reveals
the three level types which SMB levels fall into: Overworld
to the top right, underground to the left and floating plat-
forms at the bottom.

Fig. 6(b) shows the distribution of level slices generated
by our 15 generators by mapping them with the same trans-
formation learned in (a). Our generators are indeed generat-
ing slices very close but not limited to the manifold of their
original level. In some cases, our generators even learn to
create slices that are not in their training distribution, but still
within the level manifold. Examples are G 1-3, G 5-3, and
G 6-3 that generate slices in the same space as 3-3. This ex-
periment highlights the variability of the produced slices of
a generator while still being within the intended constraints
of being a SMB level of the same style.

Level Authoring

TOAD-GAN enables us to perform authoring of the global
level structure. This is made possible by editing the token
maps in any of the scales, which results in the edit being
represented in the generated level. Fig. 7 shows examples of
this application for seeding a track layout in Super Mario
Kart. TOAD-GAN is only trained on the original sample
track and will generate track layouts similar to that. Because
our method does not yet take playability into account, dead
ends and unconnected track pieces can be generated. Seed-
ing a layout can not only ensure a connected and working
racing track, it also allows the track to have a significantly
different structure than the original sample. Each seed can,
depending on the noise in the other token maps and the other
scales, generate an infinite amount of levels with the given
structure. As the Super Mario Kart levels are much larger
than the SMB levels, we used 5 convolutional layers instead
of 3 and chose 9 scales (0.2, 0.3, . . . , 1.0). The token hier-
archy is (from low to high) ground, wall, road and special
(coins etc.).

5 Conclusion and Future Work

With this paper, we propose TOAD-GAN, a Procedural Con-
tent Generation algorithm that is able to generate token-
based levels (as shown for Super Mario Bros. and Super
Mario Kart) while being trained on a single example. We

14



(a) Original level slices (b) Our generated level slices (same transformation as (a))

Figure 6: Level slice representations of a level classifier projected to two dimensions. Each point represents a 16 × 16 slice
of a Super Mario Bros. level. The marked points are the ones closest to the mean of their respective level. For visualization
purposes, a small amount of noise was added to the points, as some would otherwise overlap. The generated slices are close to
the original slices of their respective level, with some slices being similar to other levels of the same style.

Figure 7: TOAD-GAN can be applied to levels of arbitrary
token-based games, e.g. Super Mario Kart. We can enforce
a predetermined track layout by conditioning the generation
process in the lowest scale. The examples shown are two
different hand-drawn digits from the MNIST dataset (LeCun
et al. 1998) and an additional layout made for this example.

expand on the novel SinGAN architecture to generate token-
based levels instead of natural images. The generated levels
are evaluated qualitatively by computing their Tile Pattern
KL-Divergence. Their visualization as slice embeddings of-
fers a new way of comparing them with the original levels
without specifying the pattern dimensions. By seeding a pre-
defined basic level layout, it is possible to generate new lev-
els while still keeping the style that TOAD-GAN was trained
on. An example of this is shown by using hand drawn tracks
for generating Super Mario Kart levels. Our experiments
demonstrate how TOAD-GAN is able to capture the patterns
of its training input and generate consistent variations of it.

We intend to improve our approach in the future by also
taking gameplay mechanics into account during the genera-
tion process. Samples generated with TOAD-GAN are visu-
ally convincing Super Mario Bros. levels, but a proper study
with human participants will help to assess the output quality
in more depth. Another future direction will be the applica-
tion of TOAD-GAN to voxel-based games (e.g. Minecraft)
or to maze games with a non-linear level structure.

TOAD-GAN is a step towards using PCG via Machine
Learning during the game design process due to its low re-
quirements for the amount of data necessary and its exten-
sion to Level Authoring.

6 Acknowledgment

This work has been supported by the Federal Ministry for
Economic Affairs and Energy under the Wipano programme
”NaturalAI” 03THW05K06.

References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasser-
stein generative adversarial networks. In International Con-

15



ference on Machine Learning, 214–223.
Bontrager, P., and Togelius, J. 2020. Fully Differentiable
Procedural Content Generation through Generative Playing
Networks. arXiv:2002.05259 [cs].
Coulom, R. 2006. Efficient Selectivity and Backup Oper-
ators in Monte-Carlo Tree Search. In International confer-
ence on computers and games, 72–83. Springer.
Dahlskog, S., and Togelius, J. 2012. Patterns and procedu-
ral content generation: Revisiting Mario in world 1 level 1.
In Proceedings of the First Workshop on Design Patterns in
Games - DPG ’12. Raleigh, North Carolina: ACM Press.
Dahlskog, S., and Togelius, J. 2014. A multi-level level
generator. In 2014 IEEE Conference on Computational In-
telligence and Games. Dortmund, Germany: IEEE.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in Neural
Information Processing Systems.
Green, M. C.; Mugrai, L.; Khalifa, A.; and Togelius, J.
2020. Mario Level Generation From Mechanics Using
Scene Stitching. arXiv:2002.02992 [cs].
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved Training of Wasserstein
GANs. In Advances in neural information processing sys-
tems, 5767–5777.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, 6629–6640. Red Hook, NY,
USA: Curran Associates Inc.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hoover, A. K.; Togelius, J.; and Yannakis, G. N. 2015. Com-
posing Video Game Levels with Music Metaphors through
Functional Scaffolding. In First Computational Creativity
and Games Workshop. ACC.
Khalifa, A.; Green, M. C.; Barros, G.; and Togelius, J.
2019. Intentional computational level design. In Proceed-
ings of The Genetic and Evolutionary Computation Confer-
ence, 796–803.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Lucas, S. M., and Volz, V. 2019. Tile Pattern KL-Divergence
for Analysing and Evolving Game Levels. Proceedings of
the Genetic and Evolutionary Computation Conference.
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. In-
troduction to information retrieval. Cambridge university
press.
McInnes, L.; Healy, J.; and Melville, J. 2018. UMAP: Uni-
form Manifold Approximation and Projection for Dimen-
sion Reduction. arXiv:1802.03426 [cs, stat].
Shaham, T. R.; Dekel, T.; and Michaeli, T. 2019. Singan:
Learning a generative model from a single natural image. In

Proceedings of the IEEE International Conference on Com-
puter Vision, 4570–4580.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; Smith, G.; and Baumgarten,
R. 2011. The 2010 Mario AI Championship: Level Gener-
ation Track. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(4).
Snodgrass, S., and Ontanón, S. 2013. Generating maps using
markov chains. In Ninth Artificial Intelligence and Interac-
tive Digital Entertainment Conference.
Summerville, A., and Mateas, M. 2016. Super Mario as a
String: Platformer Level Generation Via LSTMs. 1st Inter-
national Joint Conference of DiGRA and FDG.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and
Ontañón, S. 2016. The VGLC: The Video Game Level
Corpus. Proceedings of the 7th Workshop on Procedural
Content Generation.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural Content Generation via Machine Learn-
ing (PCGML). IEEE Transactions on Games 10(3).
Summerville, A. J.; Philip, S.; and Mateas, M. 2015. MCM-
CTS PCG 4 SMB: Monte Carlo Tree Search to Guide Plat-
former Level Generation. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
Togelius, J., and Dahlskog, S. 2013. Patterns as Objectives
for Level Generation. In Proceedings of the Second Work-
shop on Design Patterns in Games. ACM.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-Based Procedural Content Generation:
A Taxonomy and Survey. IEEE Transactions on Compu-
tational Intelligence and AI in Games 3(3).
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 Mario AI Competition. In IEEE Congress on Evolu-
tionary Computation. Barcelona, Spain: IEEE.
Torrado, R. R.; Khalifa, A.; Green, M. C.; Justesen, N.; Risi,
S.; and Togelius, J. 2019. Bootstrapping Conditional GANs
for Video Game Level Generation. arXiv:1910.01603 [cs].
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space
of a deep convolutional generative adversarial network. In
Proceedings of the Genetic and Evolutionary Computation
Conference, 221–228.
Volz, V.; Justesen, N.; Snodgrass, S.; Asadi, S.; Purmonen,
S.; Holmgå rd, C.; Togelius, J.; and Risi, S. 2020. Capturing
Local and Global Patterns in Procedural Content Generation
via Machine Learning. arXiv:2005.12579 [cs].
Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A.
2019. Self-Attention Generative Adversarial Networks.
arXiv:1805.08318 [cs, stat].

16


