
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Word Autobots:
Using Transformers for Word Association in the Game Codenames

Catalina M. Jaramillo, Megan Charity, Rodrigo Canaan, Julian Togelius
Game Innovation Lab, New York University

370 Jay St, Brooklyn, NY 11201, USA
{cmj383, mlc761, rodrigo.canaan}@nyu.edu, julian@togelius.com

Abstract

Winning the social game Codenames involves combining co-
operative and language understanding capabilities. We de-
veloped six cooperative bots designed to play the Codemas-
ter and Guesser roles in the Codenames AI Competition and
tested them using the provided framework and a round-robin
tournament set. The bots are based on term frequency - in-
verse document frequency (TF-IDF), Naive-Bayes and GPT-
2 Transformer word embedding. Additionally, Transformer-
based bots were assessed and compared with the concatena-
tion of word2vec and GloVe baseline bot developed by Co-
denames AI Competition creators. Results from this Trans-
former implementation rivals the concatenated bot in terms
of win rates and guess precision and outperforms it in terms
of minimum and average turns taken to win the game and
training data load time. Additionally, in an initial evaluation
performed with 10 human players, the Transformer agent per-
formed slightly better than the baseline as Codemaster, but
worse as a Guesser.

Introduction

Most AI research using games as testbeds use either classi-
cal board games such as Chess or Go, or video games, typi-
cally older ones (Yannakakis and Togelius 2018). But differ-
ent games pose different challenges for humans and agents.
Building agents for games which are less explored is inter-
esting for multiple reasons, for example as a way to better
understand the design of these games and which cognitive
challenges they pose, to enable playtesting, balancing and
content generation, or to create agents that are interesting to
play with.

This paper explores bots for the social board game Code-
names, where one of the main cognitive challenges is pre-
dicting how players on your team make word associations.
While we are not the very first to build a bot for Codenames,
we are the first to present a bot based on modern deep learn-
ing methods, we conduct a thorough empirical comparison,
and we perform a user study with human players.

Codenames has two characteristics that are individu-
ally appealing and which together distinguish it from other
game-based AI competitions and benchmarks:

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Natural language based. Many promising AI applica-
tions also hinge on language models, such as translation,
reading comprehension, and natural language inference
(Brown et al. 2020). Different environments, like LIGHT
(Learning in Interactive Games with Humans and Text)
platform (Urbanek et al. 2019) and AI Dungeon (Wal-
ton 2019), focus on AI language exploration and offer
opportunities to further develop related applications. Co-
denames, as played between humans, uses language in
a very rich way (homonyms, antonyms, rhymes, popular
culture references, etc.) and relies in making inferences
and can also be used with this objective.

• Cooperative in nature. Many real-world AI applications
involve cooperation, not competition, with humans. Most
game-based AI benchmarks are competitive, and even
some of those that involve cooperation (e.g. GVGAI
multi-agent (Gaina, Pérez-Liébana, and Lucas 2016),
Pommerman (Resnick et al. 2018)) have had success-
ful entries that largely ignore the partner agent and sim-
ply attempt to optimize one’s own behavior. In Code-
names, partner behavior is critical, as evidenced by the
fact that codemaster-guesser pairs using the same mod-
eling achieve much higher scores and win rates than
mixed pairs. This is similar to what is observed in Han-
abi (Walton-Rivers, Williams, and Bartle 2019; Bard et
al. 2020), where although agents with shared conventions
achieve near-perfect scores, cooperation with unknown
agents is still an open problem.

Codenames, the Board Game

Figure 1: An example Codenames game board (right) and
key (left). Each word is highlighted in the image (but not in
the game) with the key’s corresponding color.

231



Codenames (Chvatil 2015) is a board game where the ob-
jective is to identify a team’s secret agents (represented by
words on the board) in the minimum number of turns pos-
sible. Also, it is important to avoid the words that represent
bystanders (losing the turn), opposite team’s agents (losing
the turn and adding a guess to the other team’s count) and the
assassin (losing the game). Each team consists of one Code-
master and one or more Guessers. The role of the Codemas-
ter is to provide a clue word and number of secret agents re-
lated with that word, based on the Codemaster’s knowledge
of the board words’ assignment. The role of the Guessers
is to pick the own team’s words from the board using the
provided clue. This is a cooperative game, where the Code-
master of a team, using word association, picks a clue for the
Guessers to identify as many of the own agents, from the 25
options in the board, while keeping the Guessers away from
the wrong key names.

For the Codenames AI Competition framework, the sub-
set of words corresponding to our team are the red words.
The remaining words on the board are identified as bad
words and are split in a subset of blue words (correspond-
ing to the opposite team), civilian words (representing by-
standers) and one word labeled as assassin.

Codenames, the AI Competition

The Codenames AI Competition Framework (Summerville
et al. ) tests AI’s understanding of human language and com-
munication capacity using the game Codenames as testbed.

It is a simplified version with a single team formed by
a Codemaster and a Guesser. Participant bots are paired at
random trying to complete the game in the least moves, with
a 30 seconds limit per turn. For each turn, the Codemaster
gives a clue -a word and a number of guesses (n); then the
Guesser takes one or more guesses until (whichever comes
first): the guesser passes the turn, n+1 guesses have been
made, or a mistake has been made (a non “red” word was
guessed). The penalty for guessing a bad word is a lost turn.

Scoring is based on the number of turns (lower score is
better), and a lost round gets 25 points; following the ap-
proach used by Kim et al. (2019), the average number of
turns is calculated using only won games. Competition base-
line bots use word2vec (Mikolov et al. 2013), GloVe (Pen-
nington, Socher, and Manning 2014), and WordNet models
(Fellbaum 2012).

Related Work

Previous research with the artificial playing of Codenames
by Kim et al. (2019) developed and compared performance
for both Codemaster and Guesser bots using different word
embedding models (WordNet, word2vec and GloVe), and
different distance measures in a round-robin tournament.
The WordNet based bot was excluded from the original
study because of its poor performance. For the remaining
bots, results were mixed, showing better performance for
Codemaster agents that were paired with similar approach
Guesser, and for agents that used a concatenated word2vec
and GloVe strategy. Their word2vec strategy looked to cre-
ate word vectors that predict both words and contexts, while

their GloVe strategy looked to find co-occurences between
words through weightings.

Outside of the Codenames challenge, the concept of
identifying word relatedness and word contextualizing is a
largely explored area of natural language processing. The
TF-IDF algorithm was used by Wu et al. (2008) for making
word query relevancy decisions based on both document-
wide and local relevance. They developed a context-based
ranking formula to sort probabilities accordingly. Jurafsky
and Martin (2014) demonstrate that the use of a multi-
label classification Naive-Bayes method helps with word
sense disambiguation (WSD) and determine word similar-
ities. OpenAI’s GPT-2 Transformer (Openai 2019) is in-
tended for sequential word prediction based on unsupervised
learning: it provides a pretrained word embedding model
that comprises words’ meanings by considering the contex-
tual relationships among words (Radford et al. 2019).

Methods

All of the bots follow the baseline algorithm developed for
the Codenames AI framework that is shown in Kim et al.
(2019). From there, the following word association algo-
rithms are applied to enhance the bots’ performances within
the game.

Term Frequency - Inverse Document Frequency
algorithm

The TF-IDF algorithm determines the importance of a word
based on its frequency in a document compared to an entire
corpus of documents. For our experiment, our corpuses are
Wikipedia summaries retrieved from the Wikipedia Python
library and dictionary definitions retrieved from the PyDict
library for the words on the board. The bot preprocesses the
embeddings for the words by retrieving these summaries,
removing stop words, and tokenizing the words within the
summaries and definitions. Using a bag-of-words model, it
calculates TF-IDF scores for each word in each summary.

The Codemaster bot uses the TF-IDF scores to select a
corpus document that contains the highest frequency of red
words. The bot selects a word with high term frequency
score from this document to use as clue word and the number
of red words found within the document as the clue number.

The Guesser bot uses the same TF-IDF scores to do a re-
verse search within the set of corpuses to find the document
containing the highest term frequency of the clue word and
selects any board words found; ranking them based on their
term frequency times inverse document frequency score.

Naive-Bayes Algorithm

The Naive-Bayes algorithm determines the probability of a
word belonging to a particular class using Bayesian infer-
ence. It requires a corpus data set for the words, and class
sets to categorize them into. Like the TF-IDF algorithm, we
used tokenized Wikipedia summaries and dictionary defini-
tions as the corpus set for the board words. For the ”classes”
representation, we used a list of 118 generic word categories
(i.e. ”animals”, ”countries”, ”food”, etc) and retrieved their
summaries and definitions to be used as training data.

232



The Codemaster bot uses Laplace smoothing in order to
determine the probabilities of each red word belonging to
these category ”classes.” When adding the probabilities of
words in each class, the category with the highest probabil-
ity is used as the clue word and the number of red words
with a probability higher than a preset threshold value - the
minimum possible Laplace distance - are used as the guess
number.

The Guesser bot uses the same Laplace smoothing algo-
rithm and dataset to determine the probability of each board
word belonging to the specified class clue word. It ranks
each board word based on their probabilistic Bayesian score
calculated.

Transformer Algorithm

The transformer-based bot uses the pretrained GPT-2 word
embedding model for the representation of the words on the
board. GPT-2 uses stacks of transformer decoder blocks to
build a highly contextualized Language Model designed to
predict the next word in a sequence. (Radford et al. 2019).
For the Codenames (Chvatil 2015) setup, the input consists
of a set of single words, hence a context based fine tuning is
not considered since a pretrained embedding suffices to re-
flect a general meaning for each word. Also, because a static
representation was needed, only the first layer of the em-
bedding was used. In order to minimize the curse of dimen-
sionality, the small OpenAI GPT-2 English model (with a
vocabulary size of 50257 and 768 dimensions) was selected
(Openai 2019). Cosine Similarity metric was used to calcu-
late distances between the words.

In the Codemaster bot, a subset of red words within a dis-
tance threshold is selected and a centroid that represents it
is calculated. In an initial approach, the set of bad words -
words with either a civilian label, an opponent team label, or
an Assassin label - was also included in the centroid calcu-
lation (using negative weights, varying with the importance
of the risk); the resulting centroid was markedly displaced
from the subset neighborhood, resulting in a meaningless
word search. Using the centroid and the vocabulary in the
pretrained model, K nearest neighbors (KNN) was applied
to find a list of recommended words. These words are lo-
cated in the subset vicinity, offering a spatial, representation
and meaning closeness. For the weighted version of the bot,
this recommended list is sorted, using the relationship be-
tween the similarity with the red words and the similarity
with the bad words to minimize the associated risk.

The Guesser bot uses KNN to search for K (number pro-
vided by the Codemaster) words in the board that are closer
to the clue based on the pretrained GPT-2 embedding.

Bad Word Weighting

To extend upon each of these base algorithms, we imple-
mented a weighting system for each of the words found on
the board. Bad words are weighted based on their implicit
risk factor: -1 for civilians, -2 for blue words and -3 for the
assassin. These weights are applied by the Codemaster bots
to avoid selecting these words when looking for a clue word.

Experiment Setup

The Codenames AI Competition Framework (Summerville
et al. ) is a single-team version of the game, where a Code-
master and a Guesser play together to find the red team’s
words in the minimum number of turns.

To assess the performance of the bots, a set of round-robin
tournaments was used, matching pairs of Codemaster and
Guessers bots and playing 30 games for each pair, with a
fixed set of boards.

In a first tournament the unweighted version of our three
Codemasters were used. A second contest was run using the
weighted for bad words versions.

The team wins the game when it flips all red cards before
flipping either the assassin or all the blue cards. Each time
that a bad word is flipped, the red team losses the turn and the
turn count in increased by one. The metrics used in the eval-
uation are the number of turns to win (Turns), both minimum
and average -calculated for wining cases; the percentage of
games won per each bot (Win Rate); and the number of good
(red) and bad (either blue, civilian or assassin) words flipped
during each game.

In a second stage of the experiment, the GPT-2 Trans-
former based bots were matched with the best perform-
ing bot found by Kim et al. (2019) built by concatenating
word2vec and GloVe embeddings. The same metrics were
observed and compared to evaluate the agents.

To understand how human intuitive are the clues and
guessing of the Transformer and concatenated w2v+GloVe
(w2v+GloVe) bots, a study with 10 human players was per-
formed. Each participant played a total of 4 games, one with
each model as both Codemaster and Guesser, for a total of
40 games.

Results

Table 1: Codenames Bots

Label Bot
T GPT-2 Transformer

TF TF-IDF
NB Naive-Bayes
WG word2vec+GloVe concatenation
H Human player

For the graphs shown in this section, the label scheme de-
scribed in Table 1 is used. For each pair of graph labels, the
first listed algorithm represents the Codemaster used and the
second listed algorithm represents the Guesser used. For ex-
ample, the label ”TF-T” represents a TF-IDF Codemaster
paired with a GPT-2 Transformer Guesser.

A link to the code repository for this project can be found
in: https://github.com/MasterMilkX/codenames autobots.

Win Rate

Figure 2 shows the win rates for each bot pair - with both the
unweighted Codemasters examining only the good words
and the enhanced Codemasters applying weights to the bad
words. The Transformer self-pair had the highest win rate

233



percentage in both cases with 0.63 for the unweighted and
0.9 for the weighted bots. When considering mixed pairs, the
TF-IDF Codemaster paired with the Transformer Guesser
reached the best rate, with 0.33 for the unweighted and 0.23
for the weighted bots. Naive-Bayes got the poorest results
both self paired and in mixed pairs.

(a) Unweighted Codemasters

(b) Weighted

Figure 2: Win Rate comparison for a good word exclusive
Codemaster and a weighted bad word Codemaster

Average vs. Minimum

Figure 3 shows the minimum number of turns taken and the
average number of turns taken to win for each bot pair. The
Transformer self-pair had the smallest average number of
turns at 8.58 turns with unweighted Codemasters and 7.96
turns with the weighted Codemasters. The TF-IDF self-pair
tied with the Transformer self-pair for the minimum number
of turns taken at 5 turns to win using the unweighted Code-
masters, and the Transformer self-pair had a minimum of 4
turns with the weighted word Codemasters. Since there are
a total of 8 red words per game that must be found, these
results show that the bots are able to find more red words us-
ing fewer turns and use clue words that associate to multiple
red words on the board.

Again the Naive-Bayes bots perform poorly when paired
with the other bots - requiring twice as many turns to guess
or not being able to win at all.

Board Words Left on Completion

Figure 4 shows the average number of good and bad cards
flipped on the board on completion (win or lose) for each
game.

(a) Unweighted Codemasters

(b) Weighted Codemasters

Figure 3: Average and Minimum Turns to win comparison
for a good word exclusive Codemaster and a weighted bad
word Codemaster

The Transformer self-pair is the only pair to have a higher
average of good words flipped than bad words - meaning
the Transformer bots had a higher precision; the Codemaster
for selecting clue words closely related to the red words and
the Guesser for correctly interpreting these clue words to be
associated with red words more than bad words.

The TF-IDF self-pair had the closest ratio for average
good words to average bad words flipped. Since there are
twice as many bad words on the board than good words, it
can be noted that this self-pair still performs well at select-
ing good words over bad words. The Naive-Bayes Codemas-
ter caused the highest averages for selecting bad words than
good words - resulting in the least amount of precision for all
the pairings and having only half of the good words revealed
by the end of the game.

With the weighted Codemasters, bad words that were
flipped were reduced for all pairings, meanwhile the number
of good words that were flipped remained the same except
for the Transformer self-paired bots.

Human Playability

Transformer bot has a better performance as Codemaster
when paired with a human Guesser: wining rate is 0.6 vs.0.4;
the average number of good words flipped is 6.7 vs. 5.9,
while the average number of bad words flipped is 5.9 vs.
6.1; additionally, the average number of turns is 11 vs.

234



(a) Unweighted Codemaster

(b) Weighted Codemaster

Figure 4: Average Word Flip comparison for a good word
exclusive Codemaster and a weighted bad word Codemaster

12.25, while the minimum number of turns to win is 6 for
both. In the case of human Codemaster, the concatenated
w2v+GloVe Guesser bot outperformed the Transformer one:
the wining rate is 0.8 vs. 0.3; the average number of good
words flipped is 7.1 vs. 6; and the average number of bad
words flipped was 4.2 vs. 7.4. Both the minimum number
of turns and the average number of turns to win were lower
with 7 vs. 11 and 10.75 vs. 12.67 respectively. Qualitative
findings from the human playability test included:

• Bots provide a best clue based on the board space and can
keep repeating the same clue in cases where the person
was not able to guess properly.

• Humans rely on abstract concepts and subtle relationships
that non-human agents have a harder time to identify.

Word2vec+GloVe Comparison

Win Rate Figure 5 shows the win rates for each bot
pairing. The self-paired w2v+GloVe has a 100% win rate
(Kim et al. 2019). When paired with other bots, however,
it reaches a win rate less than that of the Transformer
self-paired bot. When the w2v+GloVe concatenation bot is
paired with a Transformer bot, it performs equally as well as
both a Codemaster and a Guesser with a 60% win rate. When
paired with the TF-IDF bots and the Naive-Bayes bots it has
30% and below for a win rate.

However, some of the win rates decrease when the W2V

Guesser is paired with Codemasters using weighted bad
words compared to the Codemasters not examing the bad
words. The Weighted Transformer Codemaster results in a
57% win rate, the Weighted TF-IDF Codemasters results in
a 23% win rate, and the Weighted Naive-Bayes Codemaster
win rate remains unchanged at 17%.

(a) Unweighted Codemasters

(b) Weighted Codemasters

Figure 5: Win Rate comparison for the w2v+GloVe concate-
nation bot with Unweighted and Weighted Codemasters

Minimum and Average Turns to Win The unweighted
Transformer self-pair bots performed better than the
w2v+GloVe concatenated bots by winning the game in fewer
turns - see Figure 6 with a lower minimum turn score of 5 vs.
7. When paired with the weighted Codemasters, the average
turns taken decreased for both the Transformer and TF-IDF
bots. The average number of turns decreased to 7.6 turns
for the Transformer Codemaster - less than the w2v+GloVe
self-pairing with 7.93 in average.

It can be observed that the weighted Transformer bot was
able to give more clues within a single turn and search for the
word association and similarities between more red words
better than the w2v+GloVe bot self-pairing.

Average Words Flipped Figure 7 reveals that the
w2v+GloVe self-pairing has perfect precision in determin-
ing good words from bad words, as mentioned by Kim et al.
(2019). However, when paired with other bots its precision
falls, guessing more bad words on average than the Trans-
former self-pairing. It guesses the most good words when
paired with the Transformer bot, either as Codemaster or

235



(a) Unweighted Codemasters

(b) Weighted Codemasters

Figure 6: Minimum and Average Turns comparison for
the w2v+GloVe concatenation bot with Unweighted and
Weighted Codemasters

(a) Unweighted Codemasters

(b) Weighted Codemasters

Figure 7: Average Words Flipped comparison for the
w2v+GloVe concatenation bot with Unweighted and
Weighted Codemasters

Guesser. As Guesser, it is able to correctly guess at least half
of the red words on average. When paired with the Trans-
former as a Guesser, it picks just as many red words as bad
words.

Load Time

The Transformer algorithm had the shortest average load
time (from command run to third clue output), 31.25 s, fol-
lowed by Naive-Bayes with 59.75 s and TF-IDF with 60.25
s. Although the w2v+GloVe algorithm has the highest win
rate and creates the most precise clues and guesses it takes
over 5 times as long to load (163.75).

Conclusion and Future Work

In this experiment, we challenged the Codenames frame-
work bots w2v+GloVe with our own bots using alternative
algorithms . We used two non-vector based approaches, TF-
IDF and Naive-Bayes. Both failed to achieve good results.
We also created alternative word embedding search bots us-
ing GPT-2 and achieved competitive results in terms of win
rate and average turns taken and lower minimum turns taken
and load time. Key takeaways include:

• When bots are self-paired (based on the same method),
the average performance is better.

• Bots that consider the risk of choosing a bad word in the
selection of the clue, provide better results compared with
the unweighted version of the bots.

• The weighted transformer pair outperformed the other
bots developed by the authors in all the metrics: it triples
the wining rate of the next pair, has a better minimum
number of turns to win, and is the only one that reached
an average number of good words higher than the number
of bad words flipped during the game.

• The transformer bot is able to combine several red words
in one single clue, reducing the number of turns needed to
play the game.

When compared the w2v+GloVe bot, the transformer has:

• Lower average and minimum number of turns to win.

• Lower average good words flipped.

• A 90% wining rate (compared with 100% for the
w2v+GloVe bot). But the weighted transformer pair has
a considerably lower computational cost.

In conclusion, the transformer bot offers a promising perfor-
mance, and further work can be done aimed to keep improv-
ing it. Some suggested work includes:

• Compare different threshold values for the selection of red
words subset used in searching for recommended words.

• Compare results with different weights for the bad words
and different threshold for the red words subset selection.

Acknowledgments

Rodrigo Canaan grate-fully acknowledges the financial sup-
port from Honda Research Institute Europe (HRI-EU).

236



References
Bard, N.; Foerster, J. N.; Chandar, S.; Burch, N.; Lanctot, M.;
Song, H. F.; Parisotto, E.; Dumoulin, V.; Moitra, S.; Hughes, E.;
et al. 2020. The hanabi challenge: A new frontier for ai research.
Artificial Intelligence 280:103216.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.;
et al. 2020. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.
Chvatil, V. 2015. Codenames. Board Game.
Fellbaum, C. 2012. Wordnet. The encyclopedia of applied lin-
guistics.
Gaina, R. D.; Pérez-Liébana, D.; and Lucas, S. M. 2016. General
video game for 2 players: Framework and competition. In 2016
8th Computer Science and Electronic Engineering (CEEC), 186–
191. IEEE.
Jurafsky, D., and Martin, J. H. 2014. Speech and language pro-
cessing: an introduction to natural language processing, compu-
tational linguistics, and speech recognition. Dorling Kindersley
Pvt, Ltd.
Kim, A.; Ruzmaykin, M.; Truong, A.; and Summerville, A.
2019. Cooperation and codenames: Understanding natural lan-
guage processing via codenames. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital En-
tertainment, volume 15, 160–166.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.
Openai. 2019. openai/gpt-2-output-dataset.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Empirical Methods in
Natural Language Processing (EMNLP), 1532–1543.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised multitask
learners. OpenAI Blog 1(8):9.
Resnick, C.; Eldridge, W.; Ha, D.; Britz, D.; Foerster, J.; Togelius,
J.; Cho, K.; and Bruna, J. 2018. Pommerman: A multi-agent
playground. arXiv preprint arXiv:1809.07124.
Summerville, A.; Kim, A.; Ruzmaykin, M.; and Truong, A. The
codenames ai competition. https://sites.google.com/view/the-
codenames-ai-competition.
Urbanek, J.; Fan, A.; Karamcheti, S.; Jain, S.; Humeau, S.; Dinan,
E.; Rocktaschel, T.; Kiela, D.; Szlam, A.; and Weston, J. 2019.
Learning to speak and act in a fantasy text adventure game. arXiv
preprint arXiv:1903.03094.
Walton-Rivers, J.; Williams, P. R.; and Bartle, R. 2019. The 2018
hanabi competition. In 2019 IEEE Conference on Games (CoG).
IEEE.
Walton, N. 2019. Ai dungeon. = https://aidungeon.io/.
Wu, H. C.; Luk, R. W. P.; Wong, K. F.; and Kwok, K. L. 2008.
Interpreting tf-idf term weights as making relevance decisions.
ACM Transactions on Information Systems 26(3):1–37.
Yannakakis, G. N., and Togelius, J. 2018. Artificial intelligence
and games. Springer.

237


