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Abstract

Player modeling attempts to create a computational model
which accurately approximates a player’s behavior in a game.
Most player modeling techniques rely on domain knowledge
and are not transferable across games. Additionally, player
models do not currently yield any explanatory insight about a
player’s cognitive processes, such as the creation and refine-
ment of mental models. In this paper, we present our findings
with using action model learning (AML), in which an action
model is learned given data in the form of a play trace, to learn
a player model in a domain-agnostic manner. We demon-
strate the utility of this model by introducing a technique to
quantitatively estimate how well a player understands the me-
chanics of a game. We evaluate an existing AML algorithm
(FAMA) for player modeling and develop a novel algorithm
called Blackout that is inspired by player cognition. We com-
pare Blackout with FAMA using the puzzle game Sokoban
and show that Blackout generates better player models.

Introduction

Player modeling is the study of computational models of
players in games (Yannakakis et al. 2013). It sees varied and
widespread usage in today’s video game industry. Imangi
Studios, developers of the popular Temple Run (Imangi Stu-
dios 2011) series of mobile games, collect player telemetry
in order to analyse player behavior and provide customized
gameplay experiences. Forza Motorsport 5 (Turn 10 Studios
2013) implements a Drivatar system which learns to mimic
the player’s behavior in the game and simulate the player in
other races.

Despite the multitude of techniques used to build player
models, such as self-organizing maps (Drachen, Canossa,
and Yannakakis 2009), Bayesian networks (Yannakakis and
Maragoudakis 2005), and multi-layer perceptrons (Peder-
sen, Togelius, and Yannakakis 2010), many of them rely on
features extracted from domain knowledge of the game’s
rules and as such cannot be generalized easily, except per-
haps to games of the same genre. The inability to easily train
new models for different games using the same technique
presents a barrier to any single technique’s adoption.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Furthermore, while current techniques aim to predict
player actions, we argue that there is a corresponding need
to be explain their underlying cognitive processes. There
is empirical evidence in cognitive science that game play-
ers build mental models, knowledge structures capable of
simulating the system they are interacting with and predict-
ing and explaining the outcomes of scenarios, while play-
ing games (Boyan, McGloin, and Wasserman 2018). Mental
models may start out erroneous, but improve over time as
the player learns from which of their attempted actions suc-
ceed and fail. We believe that mental model alignment is one
of the most important aspects of using games for impactful
applications, such as education and training, and that player
modeling techniques should be designed to yield insight into
this cognitive process.

To address these needs, we propose action model learn-
ing (AML), in which an action model is learned from play
traces, as a viable technique. Action models can be used to
learn player models in any game which can be represented in
a planning formalism like PDDL. There is a rich body of lit-
erature on learning action models from action traces which
we can leverage to learn action models.

In this paper, we describe our efforts to build an action
model-based player model which can be used to character-
ize player competency. To ascertain the feasibility of ac-
tion model learning as an approach to player modeling, we
started with a modern algorithm known as FAMA (Aineto,
Celorrio, and Onaindia 2019) out-of-the-box. In parallel, we
developed an in-house alternative that we call Blackout, mo-
tivated by mental model alignment and taking failed actions
into account. We test both approaches on the puzzle game
Sokoban and evaluate their output, finding that Blackout out-
performs FAMA for the task of player modeling. We discuss
both techniques’ advantages and limitations and suggest av-
enues for future work.

While this paper’s quantitative results focus on the com-
parison between AML and Blackout, more generally, we ar-
gue that AML is a tractable and domain-agnostic approach
to player modeling, and that the learned action model is a
useful player model. We justify the tractability claim by suc-
cessfully applying both FAMA and Blackout to the task of
learning a player model from action traces, measuring their
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efficiency on problems of various sizes as well as preci-
sion and recall. We justify the domain-agnosticity claim by
successfully learning action models for two additional do-
mains: Hanoi (the Tower of Hanoi puzzle) and N-puzzle (a
sliding tile puzzle), using publicly available domain files1

and trajectories from FAMA’s evaluation dataset. We justify
the usefulness claim by presenting a technique to quantify
a player’s mechanical mastery of a game given their action
model-based player model.

Related Work

Player modeling is a relatively new field, previously stud-
ied under the umbrella of HCI in the form of user mod-
eling (Biswas and Springett 2018) and student modeling.
(Chrysafiadi and Virvou 2013) Recent surveys on player
modeling provide useful taxonomies (Smith et al. 2011), an
overview of techniques that have been used for player mod-
eling generally (Machado, Fantini, and Chaimowicz 2011)
or for MMORPGs (Harrison and Roberts 2011), and chal-
lenges commonly encountered in the field, including the re-
liance on knowledge engineering (Hooshyar, Yousefi, and
Lim 2018) that motivates our work.

Domain-agnostic approaches to player modeling have
been attempted before. Snodgrass, Mohaddesi, and
Harteveld (2019) describe a general player model us-
ing the PEAS framework, which presents a theoretical
framework for providing game recommendations, but does
not account for in-game player behavior. Nogueira et al.
(2014) use physiological readings of players to model their
emotional response to game events. While input-agnostic,
this technique relies on physiological data from sensors,
which is difficult to acquire. Our approach requires only
gameplay traces, which can be easily done by making
minor modifications to the game engine code. Deep neural
networks have been used to simulate the actions of human
players in interactive fiction games (Wang et al. 2018)
and MMORPGs (Pfau, Smeddinck, and Malaka 2018)
and to generate new levels in a platformer game based
on learned player preferences (Summerville et al. 2016).
These techniques rely only on easily obtainable input like
gameplay logs or video recordings, and do not use any
knowledge engineering to train the model. We believe our
approach has two advantages: that it does not require as
much data to learn, and, by generating a rule-based model,
offers more explanatory power for player behavior.

To the best of our knowledge, this is the first-known
application of AML to player modeling. The literature on
AML has primarily focused on learning sound action mod-
els for use by an automated planner, with little attention
paid to modeling the player’s cognitive processes. Human-
aware planning attempts to create planning agents which
can take human mental models into account while planning
(Chakraborti et al. 2017), while we attempt to treat a human
as a planning agent and learn a domain model which mirrors
their mental model. Serafini and Traverso (2019) introduce
a perception function which maps sensor data to state vari-
ables in order to learn action models. We believe investigat-

1http://planning.domains/

ing player perception functions for cases like player disabil-
ity to learn action models would be fruitful to pursue. An
early AML algorithm called OBSERVER uses action fail-
ures to learn action preconditions (Wang 1995), which mir-
rors our approach.

Background

Action model learning (AML) is situated within the tradition
of automated planning, in which an action model describes
the preconditions and effects of each action an agent may
take in a world. Preconditions and effects are propositional
formulas over fluents (predicates whose truth changes with
time). A plan is a sequence of actions, each instantiated with
terms for each parameter position, such that the effects of
each action entail the preconditions of the action following
it. AML, then, is the problem of discovering an action model
from a set of observed plans.

More formally, an AML algorithm takes as input
a number of action traces, each a sequence τ =
〈s0, a1, s1, a2, s2, · · · , an, sn〉, where si are states and ai
are actions, and returns as output an action model, which is
a specification of the preconditions and effects of every ac-
tion in the domain. These action traces are usually assumed
to be fully observed, i.e. every fluent of a state is present, but
various developments in AML algorithms allow action mod-
els to be learned from action traces with partially observed
or noisy states as well. An action model is represented as
a STRIPS-style domain, with the most common representa-
tion format being PDDL.

The primary domain used in development and testing is
the classic Japanese block-pushing puzzle game Sokoban,
which we use to demonstrate the feasibility of our approach.
We select it based on its relative minimalism and existing
formalizations in PDDL as part of the International Plan-
ning Competition (IPC) benchmark suite (Coles et al. 2012).
In Sokoban, there are stones (or crates) scattered around a
warehouse floor, which the player must push to certain spec-
ified locations around the warehouse, but can only push the
stones in cardinal directions, cannot climb over the stones or
other obstacles, and can only push one stone at a time. For
an overview of Sokoban’s rules and its characteristics as a
search problem, we refer readers to Junghanns and Schaef-
fer (1997). The specific representation of Sokoban we use is
a domain that appeared in the 2011 International Planning
Competition,2 modified to remove action costs.

Player Modeling with FAMA

AML attempts to learn the domain model of a game. In ap-
plying AML to player modeling, we treat the player’s men-
tal model of the game’s rules as a domain, and attempt to
learn it using an AML algorithm. Our goal is to learn an ac-
tion model corresponding to the player’s mental model of
the game’s mechanics.

To determine baseline feasibility of AML as an approach
to player modeling, we started with an out-of-the-box al-
gorithm known as FAMA (Aineto, Celorrio, and Onaindia

2https://github.com/potassco/pddl-instances/blob/master/ipc-
2011/domains/sokoban-sequential-satisficing/domain.pddl
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1 (:action move
2 :parameters
3 (?p - player
4 ?from -

location
5 ?to - location
6 ?dir -

direction)
7 :precondition (

and
8 (clear ?to)
9 (at ?p ?from)

10 (is-nongoal ?
from))

11 :effect (and
12 (clear ?from)
13 (at ?p ?to)
14 (move-dir ?from

?to ?dir)
15 (not (at ?p ?

from))
16 (not (clear ?to

))))

1 (:action move
2 :parameters
3 (?p - player
4 ?from -

location
5 ?to - location
6 ?dir -

direction)
7 :precondition (

and
8 (clear ?to)
9 (at ?p ?from)

10 (move-dir ?from
?to ?dir))

11 :effect (and
12 (clear ?from)
13 (at ?p ?to)
14 (is-nongoal ?to

)
15 (is-nongoal ?

from)
16 (not (at ?p ?

from))
17 (not (clear ?to

))))

Figure 1: A comparison between the move action learned
by M1 and M2

2019). FAMA performs AML by compiling the learning task
into a classical planning task. This is done by creating ac-
tions in the compiled planning domain which correspond to
inserting fluents in the preconditions or effects of various
actions in the planning domain to be learned. The solution
plan is thus a sequence of actions which builds up the output
domain model and verifies its consistency.

FAMA has properties which are useful for our problem.
It is capable of working with action traces having incom-
plete states (states with missing fluents) and missing actions.
Since it utilizes classical planning, we can use a variety of
existing planners in our system based on their properties
such as computation time and memory availability. The ac-
tion models it produces are formally sound and can be used
to generate new trajectories. It is capable of learning action
models from multiple different trajectories.

In lieu of a human player, we use the FastDownward
19.12 planning system to generate a solution path for each
of two custom levels, then convert each solution into an ac-
tion trace which is input to FAMA. We use FAMA with full
state observability to successfully learn two action models
M1 and M2 from each of the two obtained action traces.
Figure 1 shows the —move— action learned by both mod-
els.

Player Modeling with Blackout

Our new AML algorithm, Blackout, takes advantage of
stronger assumptions that can be made of the input (such
as full observability) to improve execution speed and model
accuracy. Blackout also takes action failures into account
based on the cognitive theory that failed actions inform play-
ers’ mental models.

The inputs to Blackout are (1) a play trace and (2)
a domain file D = {Θ,Ψ, α}, where Θ is the set of
types, Ψ is the set of predicates, and α is the action
model. The action model consists of actions with pos-
itive and negative preconditions and effects represented
by pre+(a),pre−(a),eff+(a) and eff−(a) respectively.
We assume deterministic action effects with full observabil-
ity of states and actions and no noise. We believe this is a rea-
sonable assumption given how the trajectories are obtained.
Blackout outputs a STRIPS action model which is not guar-
anteed to be sound.

Blackout operates in three steps: first, it produces an ini-
tial action model by analyzing the differences between the
pre-state and post-state for every action in the trajectory.
Next, it uses information from failed action executions to
improve the initial action model. Finally, it computes invari-
ants which hold for predicates in the domain to further im-
prove the action model. We now explain each step in detail.

Step 1: Successful Action Analysis

We first compute the effects of actions by calculating the
delta state for each action execution. For discovering pre-
conditions, we first calculate the set of all possible fluents
which could be valid preconditions given the domain and
the action’s bindings. This is done by binding all possible
combinations of objects already bound to an action’s argu-
ments, given by obj(a), to all predicates in the domain. As-
signment of a set of objects ω to a predicate p is represented
by p(ω), assuming ‖ω‖ = arity(p) and there is no type
mismatch. Applicable preconditions are first generalized in
the function G i.e. their bindings are replaced with variables
and then added to the precondition lists. The action model
output in this step may contain superfluous and erroneous
preconditions.

Algorithm 1: Successful Action Analysis
Data: a set T of trajectories of the form

〈s0, a0, s1, a1, s2, · · · , an−1, sn〉, a reference
domain model D = {Θ,Ψ, α}

Result: a STRIPS action model A
begin

Initialize empty action model A;
foreach trajectory t ∈ T do

foreach 〈s− a− s′〉 in t do

s← s \ {p | p ∈ s,obj(p) � obj(a)};
s′ ← s′ \{p | p ∈ s′,obj(p) � obj(a)};
F ← {p(ω) | p ∈ Ψ, ω ∈
obj(a)arity(p)};
pre+(a)← G(F \ s);
pre−(a)← G(F \ s′);
eff+(a)← G(s′ \ s);
eff−(a)← G(s \ s′);

end

end
return A

end
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Step 2: Failed Action Analysis

Failed actions are actions which the player attempts to per-
form in-game, but which cannot be completed due to the
preconditions of an action not being met. It indicates a mis-
match between the player’s mental model of the game’s me-
chanics and the actual action model representing the game.

Blackout makes the assumption that players notice the
failure of action execution and update their mental model
to account for this. We record failed actions in a manner
similar to successful actions in the trajectory, with failed ac-
tions forming triplets of the form 〈s−af − s〉. The pre-state
and post-state are identical since the action failed to execute.
Blackout attempts to identify the predicates in the pre-state
which caused the action af to fail to execute due to violating
its preconditions. These are stored in the sets R+

af
and R−

af

for positive and negative preconditions respectively.
The detailed algorithm is described in Algorithm 2.

Algorithm 2: Failed Action Analysis
Data: a set T of trajectories of the form

〈s0, a0, s1, a1, s2, · · · , an−1, sn〉 with failed
actions af , a reference domain model
D = {Θ,Ψ, A}, action model A from step 1

Result: a STRIPS action model A
begin

foreach trajectory t ∈ T do
foreach 〈s− af − s〉 in t do

R+
af
← R+

af
∪ (pre+(af) \ s);

R−
af
← R−

af
∪ (pre−(af) ∩ s);

if R+
af

is a singleton set & R−
af

= ∅ then

Mark p ∈ R+
af

as confirmed;
else if R+

af
= ∅ & R−

af
is a singleton set

then

Mark p ∈ R−
af

as confirmed;
else

Mark 〈R+
af
, R−

af
, af 〉 as ambiguous;

end

end

end
foreach action a ∈ A do

pre+(a)← G({p | p ∈ pre+(a) where p is
confirmed});
pre−(a)← G({p | p ∈ pre−(a) where p is
confirmed});

end
return A

end

Step 3: Invariant Extraction

In this step, Blackout identifies invariants that hold among
pairs of predicates in the domain. An invariant between two
predicates p and q for some shared variable v is a relation on
{(p, q), (p,¬q), (¬p, q), (¬p,¬q)}} × B. It describes what
combinations of p and q are permitted to be attached to v

or not (attachment denoted by p and q, lack thereof by ¬p
and ¬q) after an action has been performed on v. Blackout
uses these invariants to resolve any ambiguities regarding
the predicates responsible for action failure in step 2, and in
doing so further refine the action preconditions.

Blackout first tries to identify invariants in the action ef-
fects. It does so by looking for candidate primitive rules,
relations between predicates p and q asserting that q’s addi-
tion implies p’s addition (or removal, depending on whether
p and q are in eff+ or eff−). Candidate primitive rules
are merged where possible to form proper primitive rules. If
these proper primitive rules cover the four cases for p and
q’s addition and removal, they represent an invariant.

However, the invariants identified so far aren’t necessarily
true for the initial state of the trajectory. For instance, in the
IPC problem files, the ”wall” cells each get a location
object with neither an at predicate nor a clear predi-
cate attached. This breaks the mutual exclusivity invariant
we observe when looking at just the action effects. In addi-
tion, some predicates (namely MOVE-DIR, IS-GOAL, and
IS-NONGOAL) never appear in the action effects at all,
which means the above process is entirely blind to them,
even though these predicates can encode useful information.
To solve both these issues, Blackout analyzes the initial state
of the system s0 when given a trajectory t.

Blackout includes a procedure Invariant(p, q, v, s0),
which returns candidate invariant relations between p and
q that hold in the initial state. These invariants are unioned
with those from action effects to form the final list of invari-
ants in the domain. These invariants are guaranteed to hold
in any state reachable from the initial state, provided that the
effects discovered in step 1 are accurate.

These invariants are used to resolve ambiguous failed ac-
tions from step 2. If any invariant refers to two different
predicates and their corresponding arguments in the same
Raf

, Blackout takes one of five possible actions on the
pre(af ) sets based on the invariant type. We document
these in Table 2.

Evaluation

Aineto, Celorrio, and Onaindia (2019) introduced a novel
metric for evaluating action models in the form of precision
and recall, which we adapt to our task of producing a score
which measures a player’s understanding of a particular me-
chanic. This technique is a slight modification of their eval-
uation scheme.

We make the assumption that every action in the domain
of a game defined in PDDL corresponds to a mechanic.
We compare the learned action model to the ground truth
model and for each action count the number of predicates
in the learned model’s preconditions and effects which are
correct (true positives), extra (false positives) and missing
(false negatives). We use this confusion matrix to compute
the F1-score for every action in the model and report it as the
player’s proficiency score for a particular mechanic given
the model, as shown in Table 3. We use the F1-score since it
is a meaningful way to combine precision and recall into a
single number.
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Algorithm 3: Invariant Extraction
Data: a set T of trajectories of the form

〈s0, a0, s1, a1, s2, · · · , an−1, sn〉 with failed
actions af , a reference domain model
D = {Θ,Ψ, α}, action model A from step 2,
R+

af
and R−

af
from step 2

Result: a STRIPS action model A
begin

P ← ∅;
foreach action a ∈ A do

foreach (p1, p2) ∈ ( eff+(a) ∪
eff−(a))2, p1 
= p2 do

foreach variable v ∈ var(p1) ∩
var(p2) do

P ← P∪
PrimitiveRule(p1, p2, v);

end

end

end
foreach primitive rule r(p, q, v) ∈ P do

if ∃a ∈ A, q ∈ eff+(a)∪ eff−(a), p /∈
eff+(a) ∪ eff−(a) then

P ← P \ {r};
end

end
I ← ∅;
foreach primitive rule r(p, q, v) ∈ P do

M ← {r};
foreach primitive rule r′(p′, q′, v′) ∈ P, r′ 
= r
do

if v = v′ ∧ ((p = p′ ∧ q = q′) ∨ (p =
q′ ∧ q = p′)) then

M ←M ∪ {r′};
end

end
if |M | = 4 then

I ← I ∪ {Invariant (M )};
end

end
J ← ∅;
foreach trajectory t ∈ T do

foreach predicate p ∈ Ψ, predicate q ∈
Ψ, variable v ∈ var(p1) ∩ var(p2), p 
= q
do

J ← J ∪ {Invariant (p, q, v, s0,t)};
end

end
K ← Merge(I, J);
foreach ambiguous 〈R+

af
, R−

af
, af 〉 do

if ∃k(p, q, v, op) ∈ K, {p, q} ⊆ R+
af
∪R−

af

then
if op = ⊕ ∨ op = � then

Mark p and q as confirmed;
end

end
return A;

end

Invariant
(pRq)

Meaning

⊥ Neither predicate can ever be present, and
neither can ever be absent

p ∧ q Both predicates must always be present

p 
⇐= q
First predicate is always present, second
is always absent

p
First predicate is always present, second
may be present or absent

p 
=⇒ q
First predicate is always absent, second is
always present

q
Second predicate is always present, first
may be present or absent

p⊕ q Predicates are mutually exclusive

p ∨ q
At least one of the predicates must
always be present

p ↓ q Neither predicate can ever be present

p� q
Predicates are equivalent: when one is
present, the other is too

¬q Second predicate is always absent, first
can be present or absent

p⇐= q
If the second predicate is present, the first
must also be present

¬p First predicate is always absent, second
can be present or absent

p =⇒ q
If the first predicate is present, the second
must also be present

p ↑ q At most one of the predicates can be
present

� Predicates are independent. Each can be
present or absent, regardless of the other

Table 1: List of all possible invariants and their meanings

F1 = 2 · precision · recall
precision + recall

(1)

To compare FAMA and Blackout, we ran them both on
traces generated manually from two hand-crafted levels (L1

and L2) and an instance from the IPC 2011 collection (L3).
The levels differ in complexity, with L1 being the simplest
and L3 being the most complex. The traces also include
failed actions. We modify the evaluation scheme proposed
by Aineto, Celorrio, and Onaindia (2019) to measure pre-
cision and recall for each action for each level. Since re-
call was found to be constant across all Blackout stages and
FAMA, for all levels, differing only by actions, we report the
recall values separately in Table 4.

Invariants Action
⊥,∧, 
⇐=, 
=⇒, ↓ Error

p,¬p q is confirmed as a precondition
q,¬q p is confirmed as a precondition

∨. =⇒,⇐=, ↑,� No action
⊕,� p and q are confirmed as preconditions

Table 2: The actions on the Raf
sets when a matching in-

variant is found
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Mechanic name F1-score
M1 M2

move 0.267 0.250
push-to-nongoal 0.308 0.216
push-to-goal 0.222 0.240

Table 3: Proficiency scores for each mechanic

Figure 2: Precision scores for Blackout and FAMA for the
push-to-goal action

Our measurements show that Blackout achieves better
precision across all actions while achieving the same recall.

We do not report FAMA metrics for L3 since we were
unable to obtain an action model from due it the implemen-
tation running out of memory on our test machine. We also
do not report results for Blackout on —push-to-nongoal—
since it doesn’t appear in the trajectory for that level and
so Blackout does not know that it exists. We display the
precision scores for Blackout and FAMA for the —push-
to-goal— action in Figure 2. The other actions have similar
trends, so we chose not to report them.

We notice that Step 3 of Blackout tends to decrease the
precision scores in comparison to Step 2, as shown in Figure
2. Whether this is indicative of a flaw in the algorithm or in
the metric will be investigated in future work.

Performance Scalability

We use a machine with an Intel Core i7-9750H CPU with 16
GB RAM to compare the elapsed time and memory usage of
FAMA and Blackout in learning action models. We attempt
to learn a single action model for each of L1, L2 and L3. To
make our trajectories compatible with FAMA, we strip them
of failed actions. We measure elapsed time and memory us-
age via wall clock time and maximum resident set size as
output by the Unix time utility. We repeat each run of the

Action Recall
move 0.2857

push-to-nongoal 0.3077
push-to-goal 0.2308

Table 4: Recall values for each action across all Blackout
stages and FAMA, for levels L1, L2 and L3

Blackout FAMA
S1 S1+2 S1+2+3

L1
Time (s) 0.11 0.10 0.11 10.59
Mem. (MB) 6.96 6.90 7.08 1572.60

L2
Time (s) 0.10 0.09 0.11 21.19
Mem. (MB) 6.80 6.78 6.99 4632.52

L3
Time (s) 2.31 2.34 2.48 —
Mem. (MB) 35.82 35.78 35.82 —

Table 5: Performance comparison between FAMA and
Blackout for player modeling

algorithm for each trajectory 30 times and report the mean
for each measured metric. Our findings for FAMA and for
each step of Blackout are listed in Table 5.

FAMA was unsuccessful in learning action models from
a relatively large trajectory file (∼ 1 MB) due to running out
of memory on the test machine; however, we expect player
trajectories to be much larger in size (> 1 GB).

We see that Blackout to be much faster in learning action
models than FAMA while having a smaller memory foot-
print. However, further work needs to be done to assess per-
formance in the case of more realistic trajectory sizes.

All of our code, including the tests, data, and Blackout
implementation, is available in an open-source repository3

Conclusion and Future Work

To the best of our knowledge, our work is the first applica-
tion of AML to player modeling. We demonstrated the fea-
sibility of AML as a domain-agnostic player modeling ap-
proach by evaluating an existing AML algorithm for the task
of player modeling, and we presented a technique to mea-
sure the player’s mechanical proficiency using the learned
model. We also introduced Blackout, a novel AML algo-
rithm that incorporates action failures, compared the two
approaches, and found that Blackout learns action models
better and faster than FAMA. Based on these findings, we
believe action model learning has the potential to serve as a
useful player modeling technique in a wide range of games.

We were motivated in this project by a hypothesis that the
cognitive process of mental model formation (Wasserman
and Koban 2019) could help design better AML algorithms
for player modeling. Blackout is informed by this motivation
in updating action models based on failed actions, which
are used similarly in mental model alignment (Boyan, Mc-
Gloin, and Wasserman 2018). However, we have not yet
conducted an experiment to measure how well our learned
models match human players’ mental models; we plan to do
this in future work.

Our proposed measure of player competency will also
benefit from refinement in future work. Quantitatively esti-
mating a player’s mechanical proficiency leaves out higher-
order skills learned by combining the use of mechanics that
players need to learn in order to become proficient at a game
(Cook 2007). Future work will attempt to model and mea-
sure the acquisition of higher-order skills.

3https://github.com/AbhijeetKrishnan/aml-for-player-
modeling
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