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Abstract

Most natural language processing research focuses on mod-
elling and understanding text formed of complete sentences
with correct spelling and grammar. However, livestream chat
is drastically different. Viewers are typically writing short
messages while responding to in-stream events, often with in-
correct grammar and many repeated tokens. Additionally, to-
kens that are commonly used in livestream chat are unknown
to traditional language understanding efforts that focus on
prosaic text. To advance and encourage further research in
terms of livestream chat understanding, in this work, we
present a large-scale dataset of video game livestream chat,
consisting of over 60 million tokens. As livestreaming be-
comes more popular it is also increasingly pertinent to study,
though chat analysis, the way in which the audience is engag-
ing with the stream. However, this is not a straightforward
task, livestream chat is a rich and complex domain, far re-
moved from often studied prosaic text. Additionally. we pro-
vide a case study analysis of word vector methods applied to
the dataset, showing that the vector space is strangely shaped
but clusterable and that the resulting clusters correlate with
features such as streamer popularity. Furthermore, human re-
latedness tests highlight the difference that this domain poses
with respect to prosaic text. It is hoped the livestream chat
dataset, the discussion of its unique features, and the chal-
lenges highlighted for future work will invigorate the research
community into further study of livestream chat.

Introduction

Livestream chat, e.g. from Twitch.tv, is a particularly in-
teresting language domain to study, the information in the
chat may be an indicator of events in the livestream (Jiang
et al. 2020). However, it is a unique and complicated do-
main. It contains many misspellings, often due to viewers
speedily typing messages reacting to the stream. These mis-
spellings can also be intentional e.g. ‘leet’ speak and other
spelling modifications (Blashki and Nichol 2005). Addi-
tionally, chats make heavy use of ‘emotes’ (Barbieri et al.
2017b), domain-specific emoji with rich, complicated mean-
ings. A scrolling window of chat messages, as shown in Fig-
ure 1, is presented at the side of the livestream where viewers
can see several previously sent messages. Messages are dis-
played until enough new messages have been sent that the
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message leaves the chat window. The higher the volume of
messages being sent the less time a message is visible.

While livestream chat has some similarities with other so-
cial media data, it is strongly evinced in the literature that
livestream chat has several unique properties. Primarily, it is
strongly linked to the streamed game content (Recktenwald
2017; Musabirov, Bulygin, and Okopny 2017), e.g. because
participants react to events in the stream, and is thus fun-
damental in understanding the context of livestreams. Sec-
ondly, the huge scale of the chat size in addition to time
constraints results in unique properties. Particularly, most
tokens are completely unknown to existing social media fo-
cused lexicons e.g. Vader (Hutto and Gilbert 2015). Under-
standing this domain is, therefore, both extremely challeng-
ing and also very important as we see the rise in popularity
of live streaming as an entertainment domain.

In this work, we present a large scale data-set1 of chat
text. Additionally, we present a baseline investigation of this
dataset which highlights how unique and challenging the do-
main is. To do so we utilise Skip-gram Negative Sampling
(SGNS) (Mikolov et al. 2013b) using human model eval-
uation. SGNS is known to produce curious vector spaces
(Mimno and Thompson 2017) but, in spite of this, we find
that livestream chat vector spaces have a particularly strange
shape. Finally, we suggest potential areas of research util-
ising livestream chat data. Throughout this work the term
‘token’ will be used to refer to words, emotes and emojis.

Related Work

Related work can be split into three categories. Firstly, prior
work into understanding and modelling livestream chat. Sec-
ondly, work into developing word vectorisation techniques,
especially those focused on SGNS approaches. Thirdly, the
limited study into Emoji and the heavy use of ideograms as
a defining feature of livestream chat.

Twitch Chat

Prior research has focused on viewer communities (Hamil-
ton, Garretson, and Kerne 2014; Seering, Kraut, and Dab-
bish 2017) as well as toxicity in these communities (Poy-
ane 2018; Bulygin 2018). Work has also been undertaken

1Data, code, and extra case-study visualisations are available at
https://osf.io/39ev7/
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into modelling streamers and viewers through graphs and
finite state machines (Nascimento and Ribeiro 2014). Ad-
ditionally, we see that the majority of viewers are watching
the most popular streams (Kaytoue, Silva, and Cerf 2012).
An important observation is that while there are often many
individual users sending messages, as shown in Figure 1,
they tend to follow a set of coherent ‘voices’ or personas
(Ford, Gardner, and Liu 2017; Cheung and Huang 2011;
Smith, Obrist, and Wright 2013). This ‘crowd speak’ results
in a coherent chat stream, even if the messages are com-
ing from many authors. Outside of natural language pro-
cessing, there has been a linguistic study of livestream chat
that observed significant variations compared to other in-
ternet communities (Olejniczak 2015), and that chat con-
tent is heavily related to stream content (Recktenwald 2017;
Musabirov, Bulygin, and Okopny 2017).

While these prior works begin to uncover the properties
of livestream chats they do not offer a statistical or machine
learning approach to understanding the meaning of tokens
through analysis of the way the chat is constructed. While
some prior works attempt to uncover the meaning of stream
specific tokens, e.g. (Barbieri et al. 2017a), generally these
works assume that certain tokens, such as ‘Kappa’, have a
certain meaning. In contrast, our work attempts to learn se-
mantic vector spaces through a study of the data itself. Fi-
nally Nakandala et. al. (Nakandala et al. 2017) explored the
use of gendered conversation in the livestream context by
utilising a set of vectorisation techniques.

Word Vectors

Word vectorisation is a popular approach for learning mean-
ingful numeric representation of tokens (Turney and Pantel
2010)(Mikolov et al. 2013a), usable in downstream tasks,
e.g. Neural Networks, (Bakarov 2018). Of particular inter-
est to our work is research into SGNS methods (Mikolov et
al. 2013b), which are particularly attractive for two reasons.
Firstly, they are weight-efficient. Secondly, they require data
in the format of two tokens and a label. This label is usually
a [0, 1] binary value, describing if the samples are close to-
gether in the corpus, a formulation which can be modified to
accommodate the temporal aspect of livestream chat. Analy-
sis of SGNS models has shown that they generate unusually
shaped vector spaces (Mimno and Thompson 2017) due to
the impact that the negative sampling objective has, although
they do still retain the ability to encode semantics. An advan-
tage of word vector models for livestreaming is that they do
not require prior knowledge of the semantic meaning of to-
kens, which is useful when dealing with livestream specific
words and emotes whose meanings are uncertain.

Emoji

Emoji and other ideograms are popular within livestream
chats, so recent analyses of the way that Emoji are used is
relevant. For instance, (Wiseman and Gould 2018) shows
that ideograms often have a complicated, and often highly
personal meaning. We can reasonably assume therefore that
certain emoji and emotes evolve to have a rich Twitch.tv
specific meaning, although the meaning of ideograms within

Figure 1: Example screenshot of livestream chat from a
League of Legends livestream.

Table 1: Summary statistics describing the distribution of
several dataset features. IQR: Interquartile Range. ‘Viewers
per Stream’ was recorded at the start of data gathering.

Feature Median IQR Min Max

Stream Documents per Streamer 1 2 1 21
Viewers per Stream 2,211 5,586 0 165,371
Messages per Stream Document 5,196 124,340 2 483,230
Message Length 2 4 1 266

livestream chats is not the subject of this work. More gener-
ally, work has been carried out into how ideograms are used
in conversant text. For instance, we see that norms surround-
ing the meaning of ideograms propagate through social net-
works (Park et al. 2013) and that geographic location, in our
case perhaps tied to the nationality of the streamer, can affect
ideogram usage (Ljubešić and Fišer 2016).

The TwitchChat Dataset

Data Collection

This paper presents a dataset gathered from Twitch.tv be-
tween June and October of 2019 by selecting the most pop-
ular channel, motivated by (Kaytoue, Silva, and Cerf 2012),
for a set of games and recording all messages being sent in
that channel until it went offline, then repeating this process.
Twenty different games were selected, representative of the
most popular games on the platform when data gathering
started. Channels were only considered if they were stream-
ing in English, as that is the most popular language on the
platform and the common language among the authors.

The process outlined above resulted in a large dataset of
over 60 million tokens from 1,951 documents, where each
document represents text from a single stream session. Data
was gathered from 666 different streamers. Summary statis-
tics regarding the distribution of various document features
can be found in Table 1. All references to streamers and
users in the dataset have been replaced using a ‘salt and
hash’ anonymisation function.
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Figure 2: Variations of ‘Kappa’ (top left) collected using the
‘View Similar Emotes’ feature on https://twitchemotes.com
(accessed 08-10-2019).

Table 2: Dataset size (in terms of number of tokens and num-
ber of unique tokens) before and after data cleaning stages.

Metric Raw Dataset After Stage 1 After Stages 2 & 3

Tokens 61,040,692 47,783,915 38,751,630
Unique Tokens 1,658,055 1,405,084 10,011

Data Cleaning Process

Token Cleaning The first stage of the cleaning process
is the removal of stop words, private messages, ‘bot’ mes-
sages (messages sent by an automatic bot rather than a hu-
man), and generally malformed and unusual tokens, e.g.
URLs. Additionally, several lemmatisation techniques were
applied. Firstly, popular emotes, e.g. Kappa, often have
many variants, as shown in Figure. 2, which were lemma-
tised so that variants are treated the same. We also see heavy
use of word expansion, e.g. ‘good’ becomes ‘goooood’, as
well as other common slang spellings, e.g. ‘would’ve’ be-
comes ‘woulda’. In total, we apply 5 custom emote rules
and 38 custom word expansion/misspelling rules. Lastly,
generic lemmatisation using the NLTK Wordnet engine
(Miller 1995; Loper and Bird 2002) was applied. This pro-
cess resulted in a dataset of approx 47 million tokens.

Token Selection Once the dataset has been cleaned and
lemmatised, we next select a subset of the tokens to train our
models on. We focus on a subset because otherwise, the size
of the model would be infeasibly large. Inspired by (Mikolov
et al. 2013a), we limit our vocabulary to the 10,000 most
popular tokens. These tokens are selected by assigning each
token a ‘document frequency’ score, which represents the
number of documents that the token appears in. All tokens
that had a document frequency score greater than or equal
to the 10,000th most frequent token were selected, result-
ing in a 10,011 token vocabulary. Selecting tokens based on
document frequency rather than raw frequency was prefer-
able because we are interested in gaining an understand-
ing of livestream chat in general. Selecting tokens based on
raw frequency would have resulted in certain tokens, mostly
emotes, which are streamer specific and thus are very heav-
ily used in those streams but not across Twitch in general.

Final Cleaning Finally, we remove all tokens that were
not selected in the previous step. This resulted in a final
dataset of 39M tokens, around 63% of the initial dataset, ev-
idence that we can reduce the number of unique tokens and
thus model size while retaining a large amount of data. Fig-

Figure 3: Log Frequency/Log Rank for the cleaned dataset.
Zipfian distributions are linear when log transformed.

ure 3 shows a Log Rank-Log Frequency graph of all ∼10k
tokens in the final cleaned dataset. Distributions which fol-
low Zipf’s law (Zipf 1935) have a linear relationship. How-
ever, both our most and least popular tokens do not follow
this. Instead, we see that the distribution appears to be Zip-
fian after the ∼26 most popular tokens. Also, a change in
gradient around rank 3,000 is observed, where tokens are
used less frequently than expected with a Zipf distribution.
This is an interesting observation given that most language
is Zipfian, and further shows how unique livestream chat is.

Case Study: Word Vector Models

To demonstrate the TwitchChat dataset’s unique features, an
analysis using four word vector models is provided.

SGNS Word Vectors

Traditional SGNS models use the spatial distance between
tokens as cues for semantic similarity. Briefly, given a pre-
defined ‘window’ of size l and a selected ‘target’ token, a
second ‘context’ token from within this window is selected
and this token pair is assigned a label of 1. Next, a ‘nega-
tive’ token is selected from outside of this context window,
often by sampling randomly from all tokens in the vocabu-
lary. This token pair is assigned the label 0 and acts as noise
to aid learning semantic vectors(Mikolov et al. 2013b). A
model is trained by finding embeddings associated with each
token, from within each token pair, and then evaluating the
cosine similarity of these embeddings, a [0, 1] bounded func-
tion which describes the angle between two vectors. Loss is
assigned based on the distance between the cosine similar-
ity and the training label. In this way, token pairs commonly
collocated in the corpus are co-located in the vector space.
For more details, please see (Mikolov et al. 2013b).

Dynamic and Temporal SGNS

Developing a livestream vector model requires special atten-
tion due to several observations. Firstly, livestream chat is
naturally temporal. Prosaic text is written without time con-
straints but chat text needs to be written promptly, e.g. react-
ing to in-stream events. Additionally, this causes fluctuation
in the frequency of messages. Because viewers are often re-
acting to stream events, we hypothesise that the temporal
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(a)

(b)

Figure 4: Relatedness survey results. (a) shows the % each
model was selected across different frequency rank bands.
(b) shows the % a neighbour was selected for each model.

distance between messages may be an indicator of the re-
latedness of the tokens contained within them. Additionally,
we observe that livestream chat messages often have many
repeated tokens and are not formed of full sentences, mean-
ing that a fixed window size may not be appropriate. There-
fore, we propose two modifications to the standard SGNS
model. Firstly, we dynamically expand the context window
to include any tokens within a message, which are not the
target token. Secondly, rather than only sampling negative
samples from noise, we sample from other messages sent
in the stream, but additionally allow for some messages, if
they are sufficiently close temporally, to contribute non-0 la-
bels. In theory, sampling from real text results in negative
samples, which approximate the unigram distribution whilst
incorporating temporal distances. To do this we reformulate
the initial binary classification task as a regression task and
then derive our training labels from a transformation of the
temporal distance between messages containing the paired
tokens. A Gaussian Radial Basis Function (RBF) is used:

f(x) = ae
−
(x− b)2

2c2 (1)

Where x is the temporal distance between messages in
seconds, e is Euler’s number, a is a constant which con-
trols the maximum value for the function, b is another con-
stant which controls the x value where the peak occurs, and

c which is a third constant which controls the slope of the
curve. For our work, a = 1 and b = 0, such that the maxi-
mum value, 1, occurs when there is 0 temporal distance be-
tween the messages. We experiment with two different val-
ues for c, c = 2, and c = 5. We use an RBF as we hypoth-
esis that the slope of the curve is similar to the ground-truth
value. Additionally, we provide a model which implements
dynamic windowing but does not allow a temporally close
message to contribute non-0 labels.

Experiment

Four word-vector models are employed. Firstly, a traditional
SGNS algorithm. Secondly, a variant using dynamic win-
dowing with l = message length (DW-SGNS). Finally, the
two temporal model SGNS variants, 2T-SGNS (c = 2) and
5T-SGNS (c = 5). Inspired by (Mikolov et al. 2013a) we use
an embedding dimension of 300. Each model was trained for
a total of 5,000 epochs, where each epoch consists of 500
mini-batches and each minibatch contained 16,384 training
samples drawn randomly from the dataset. SGNS and DW-
SGNS are both trained using binary cross-entropy, whereas
the temporal models are trained using Mean Squared Error.
All models were implemented using Tensorflow’s Keras API
(Abadi et al. 2015; Chollet and others 2015). Two evalua-
tion techniques are applied. Firstly, a relatedness test is per-
formed which uses human evaluation of semantic embed-
dings. Secondly, the vector spaces themselves are explored.

Relatedness Test Details

Evaluation is difficult because livestreaming is a unique do-
main so traditional techniques are not suitable, e.g. test sets
for livestream data do not exist. Furthermore, it is impossi-
ble to transfer livesteam models to traditional tasks because
the majority of the tokens are unique to this domain. For
comparison, only 13% of the tokens in our vocabulary ex-
ist in the Vader sentiment engine (Hutto and Gilbert 2015).
Therefore, we must use evaluation techniques that do not re-
quire prior knowledge about the meaning of tokens.

Following from (Schnabel et al. 2015), we evaluate our
models through a crowd-sourced relatedness test. To do this,
we first selected the 100 most popular tokens from our dic-
tionary, referred to as ‘target’ tokens. Next we queried each
model and retrieved the 1st, 5th and 50th nearest neighbours
(‘neighbours’) for each target. Human participants were
shown 20 targets alongside its neighbours from all models
and are asked to select the neighbour which is most related
to the target. If two competing models share a neighbour, the
neighbour is only presented once. Participants were gath-
ered through online advertising on social media sites, such
as reddit.com and twitter.com. After data cleaning, where re-
sponses with no answers or only ‘None/Don’t Know’ were
removed, we had a total of 154 respondents. Because re-
spondents were not forced to answer every question pre-
sented, there was variance in the number of responses to
each question, ranging between 14 and 35 participants, with
a median of 24 respondents.
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(a) SGNS (b) DW-SGNS

(c) 2T-SGNS (d) 5T-SGNS

Figure 5: UMAP transformation of the vector space for each model (a-d). Each data-point represents a word in the vocabulary.
K means clustering has also been applied to the UMAP space (K for each model was selected through the elbow method).

Results

Relatedness Test

Figure 4 (a) shows the performance for all models across 3
token rank strata, those with ranks 1 to 7, those with ranks
8 to 26, and those with rank greater than 26, motivated by
Figure 3. Figure 4 (b) shows the percentage amount that each
neighbour, 1st, 5th and 50th, was selected when a model was
chosen by the participants.

Visualising the Vector Spaces

The vector spaces have dimension = 300 so the shape of the
space is hard to visualise. Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) (McInnes
et al. 2018) allows us to inspect both the global and local
geometry of a vector space in fewer dimensions. Applying
UMAP shows that all vector models have two core clusters,
separable via k-means clustering, as shown in Figure 5.

Figure 6 shows the kernel density estimation (KDE) of
features for the 100 words closest to each cluster centroid.
Due to space constraints, only the SGNS model is presented
here, other models exhibit similar behaviour. ‘Chat speed’ is
the number of messages sent in the 10 seconds surrounding a
token’s appearance. ‘Message Length’ is the average length
of the messages containing the token. ‘Streamer Rank’ de-
scribes the popularity of the streamers who’s stream this
token appears in. Streamer Rank is calculated by ranking
the mean number of views the streamer had, the most pop-

ular streamer is assigned the rank of 1. ‘Term Frequency-
Inverse Document Frequency’ (tf-idf) describes how impor-
tant a certain token is to a given document. It is calculated
by multiplying the ‘term frequency’, the number of times the
token appears in a given document, by the ‘inverse document
frequency’, the log of the number of documents divided by
the number of documents a token appears in. High tf-idf in-
dicates tokens that appear often in a given document but not
in many other documents. ‘Document Frequency Rank’ is
the number of documents a token appears in and ‘Token Fre-
quency Rank’ is the total number of appearances.

Discussion

Relatedness Test

No model outperforms the others in all situations, although
SGNS appears to be generally the best. SGNS is the most
selected model and is overwhelmingly the best model with
very popular tokens. This is the only set of questions
where more respondents chose one of our models over
‘None/Don’t Know’. However, for lower-ranked tokens, the
performance gap is closed, with DW-SGNS and 5T-SGNS
models being selected more often than SGNS for tokens
with rank ≥ 26, although performance is poor for all models.

It is not clear if poor performance on lower-ranked tokens
is due to poor quality models or because these tokens are less
understood by participants and thus the quality of response
is lower. We queried Vader (Hutto and Gilbert 2015) to see

263



(a) Median Chat Speed

(b) Median Message Length

(c) Median Streamer Rank

(d) Median tf-idf

(e) Document Frequency Rank

(f) Token Frequency Rank

Figure 6: KDE plots comparing the distributions of the 100
tokens closest to the centre of each cluster for SGNS.

which tokens exist in its lexicon and which are Twitch spe-
cific, finding that only 21 tokens are known to Vader, which
interestingly is greater than the 13% for the general dataset.
However, by performing a Mann-Whitney U test we see
that there is no statistically significant difference between
the ranks of the known and unknown tokens, meaning that
the known tokens are evenly distributed. Therefore, it is rea-
sonable to believe that the performance difference is likely
due to these models finding poor vectors for less common
tokens. For both SGNS and 2T-SGNS, the 5th neighbour
is selected more than the 1st neighbour, which is an unex-
pected result, the closer tokens are in the vector space, the
stronger the expected semantic similarity. Finally, the trend
where the 5T-SGNS model outperforms SGNS for lower-
ranked tokens may continue outside of the top 100 tokens.

Analysing the Clusters

It is not initially clear why the models have two clusters.
This property is remarkable, given that prosaic text word
vectors 2 form a single cluster. While all models can be split
into two clusters, each has differently sized and shaped clus-
ters, e.g. 5T-SGNS has a larger disparity between the two
clusters than the other models. It may be that relaxing the
label constraint allows for a less fragmented vector space
because some token pairs may never appear in the same mes-

2Observed through models in Tensorflow’s Projector.
https://projector.tensorflow.org/.

sage, despite them appearing temporally close together. The
crescent shape cluster is likely an artifact of the UMAP pro-
cess rather than a feature of the vector space.

Figure 6 shows that the biggest difference between the
clusters is how popular a token is, both in terms of ‘To-
ken Rank’, (overall popularity) and ‘Document Rank’ (how
many documents each token appears in). Cluster 0 tokens
tend to be more important to the documents they appear in,
despite being less used. It appears that message length is
reasonably consistent between the two clusters but cluster 0
tokens appear more often when chat is slower. Overall, we
see that cluster 0 tokens are less popular in general but of-
ten have a high tf-idf and a flatter distribution across median
stream rank, which we interpret to mean that cluster 0 tokens
are probably tokens which are specific to certain streamers
or games, possibly indicating game-specific terms or person-
alised emotes. Cluster 1, on the other hand, appears to made
up of more platform-wide terms, as they are more popular
terms that appear in more documents.

Conclusions and Future Work

This work presents a large-scale livestream chat dataset
alongside a case study. The learned vector spaces are shaped
in strange ways and small changes to the model, e.g. vary-
ing the ‘c’ value in temporal models, results in very different
spaces. Furthermore, these spaces are shaped differently to
vector spaces generated from prosaic text, even those trained
with SGNS. Clustering these models shows that in general
two clusters are found and that the differentiating factor for
these clusters seems to be how the tokens are used, through
measures such as token rank, document rank and tf-idf.

There is a multitude of potential future work and the
authors hope that this study, alongside the dataset, sparks
conversation and interest into token vector models for
livestream chat. Several key challenges exist, for example,
further understanding these vector spaces and research into
models which can generate vector spaces with strong seman-
tic or sentimental links between tokens, potentially uncov-
ering the meaning of livestream specific tokens and emotes.
Likewise, given these spaces are clusterable, it may be possi-
ble to explore the homogeneity of these clusters, e.g. through
Hopkins Statistic (Banerjee and Dave 2004), as well as track
the popularity of tokens from each cluster over time and
from that uncover information about what is happening in
the stream and how the audience is reacting. Another av-
enue of research is to explore the implication of context on
token use, especially given that distinct communities form
around channels (Hamilton, Garretson, and Kerne 2014;
Seering, Kraut, and Dabbish 2017). Finally, suitable word
vectorization models can be utilized for downstream NLP
tasks such as modelling in-steam events via chat reaction.
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