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Abstract

There are many factors that affect the quality of data received
from crowdsourcing, including cognitive biases, varying lev-
els of expertise, and varying subjective scales. This work
investigates how the elicitation and integration of multiple
modalities of input can enhance the quality of collective esti-
mations. We create a crowdsourced experiment where partic-
ipants are asked to estimate the number of dots within images
in two ways: ordinal (ranking) and cardinal (numerical) esti-
mates. We run our study with 300 participants and test how
the efficiency of crowdsourced computation is affected when
asking participants to provide ordinal and/or cardinal inputs
and how the accuracy of the aggregated outcome is affected
when using a variety of aggregation methods. First, we find
that more accurate ordinal and cardinal estimations can be
achieved by prompting participants to provide both cardinal
and ordinal information. Second, we present how accurate
collective numerical estimates can be achieved with signifi-
cantly fewer people when aggregating individual preferences
using optimization-based consensus aggregation models. In-
terestingly, we also find that aggregating cardinal information
may yield more accurate ordinal estimates.

Introduction

Many crowdsourced activities utilize multiple people to col-
lectively classify information, predict events, and make de-
cisions (Galton 1907; Chittilappilly, Chen, and Amer-Yahia
2016). Because of varying subjective and numerical scales
among humans, individual responses can be conflicting and
it is usually unreasonable to trust a single person to pro-
vide a definitive result (Mao, Procaccia, and Chen 2013).
However, results can be promising when individual tasks are
completed independently by many people and properly ag-
gregated to produce a collective decision/estimate. This is a
principle commonly referred to as the “wisdom of crowds”,
which theorizes that the aggregated judgments of multiple
people will be relatively accurate, even with error-prone in-
dividuals (Simmons et al. 2011; Surowiecki 2005). This con-
cept has been recently been applied to crowdsourced estima-
tion tasks, such as estimating the number of dots in images
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(Horton 2010), as well as many real-world domain prob-
lems, including determining collective human ethics to drive
the decision making of self-driving cars (Noothigattu et al.
2017) and improving public health by gathering participant-
reported information (Brabham et al. 2014).

Various ways of prompting questions to crowdsourced
workers have been shown to affect the quality of data pro-
vided by individuals, and the efficiency of data collection
(Chung et al. 2019). Furthermore, the modality of data that
is collected can play a role in determining individual and
group opinions. Studies in psychology have shown that elic-
iting rankings to compare objects can yield different results
than using rating scales, the latter of which tend to exhibit
higher variability (Rankin and Grube 1980; Ovadia 2004).
Moreover, the size of the task given to each individual can
also have an impact on the overall accuracy and efficiency
of crowdsourced computation. In crowdsourced comparison
tasks, it has been found that there are big trade-offs between
problem size, worker effort, and the quality of data collected.
(Wilber, Kwak, and Belongie 2014).

A number of works have demonstrated that the quality
of a collective decision/estimate is highly dependent on the
aggregation method employed (Mao, Procaccia, and Chen
2013). Such concerns fall under the purview of computa-
tional social choice, a field dedicated in part to the rig-
orous design of preference data aggregation mechanisms
(Brandt et al. 2016). An ongoing debate in this field, and
in group decision-making in general, centers on the selec-
tion of ordinal data (i.e., rankings) or cardinal data (i.e.,
ratings or scores) to elicit and aggregate preferences. Each
of the two modalities is said to capture key distinct char-
acteristics (e.g., ability to express indifference, intensity
of preference, resp.), but each also possesses well-known
theoretical shortcomings (e.g., Arrow’s Impossibility Theo-
rem (Arrow 1951), subjectivity of scales, resp.). The mul-
titude of aggregation methods that exist can be divided
roughly into standard statistical methods (e.g., average), ef-
ficient “voting rules” (e.g., Borda rule (Brandt et al. 2016)),
and optimization-based consensus aggregation models (e.g.,
ranking aggregation (Cook 2006)). While optimization-
based aggregation models can be more computationally de-
manding, they also tend to be more resistant to individ-
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ual voter error, bias, and manipulation (Brandt et al. 2016;
Dwork et al. 2001).

This work investigates the effects of asking participants
questions whose answers require different input modalities,
specifically ordinal and cardinal estimates, and tests how
well different aggregation techniques perform in approxi-
mating an underlying ground truth. We aim to answer four
main questions:

• How is the quality of crowdsourced computation affected
when data is collected in ordinal form (ranking) and/or
cardinal form (rating/numerical estimation)?

• Does aggregating ordinal and cardinal data together us-
ing multimodal aggregation models produce more accu-
rate collective estimates?

• How does the size of the problem distributed to partici-
pants influence different aggregation methods?

• What is the size of the crowd required to achieve good
results, and how does this differ depending on the aggre-
gation method used?

To address these questions, we design a crowdsourced ex-
periment that elicits ordinal and cardinal inputs to perform
two related but distinct estimation tasks: ordering a set of
images based on the number of dots they contain and es-
timating the number of dots contained in each of the indi-
vidual images from the image set. Our results indicate that
integrating ordinal and cardinal estimates can improve ac-
curacy and efficiency of crowdsourced computation. Hence-
forth, the terms ranking (resp., rating) and ordinal (resp., car-
dinal) information are used interchangeably.

Related Works

Crowdsourcing has many unique challenges related to the
way in which data is collected and aggregated. Cognitive bi-
ases such as anchoring effect, bandwagon effect, and decoy
effect have been found to be present while collecting data
in crowdsourced tasks, and negatively affect results (Eick-
hoff 2018). Furthermore, studies have shown that in subjec-
tive labeling tasks, systematic biases stemming from worker
opinions can produce overall biased results (Hube, Fetahu,
and Gadiraju 2019).

Researchers have developed a variety of methods to cope
with human unreliability. Different methods of quality con-
trol such as honeypot traps and expectation-maximization
algorithms have been used to mitigate worker error (Quoc
Viet Hung et al. 2013). In the context of image annota-
tion, researchers have developed multiple quality control
systems, including ways to have other participants perform
quality checks (Su, Deng, and Fei-Fei 2012). Machine learn-
ing techniques have also been employed to aid in agent se-
lection and data post-processing, and systems have been de-
veloped to extract high-quality collective intelligence at low
cost (Davis-Stober et al. 2015; Goldstein, McAfee, and Suri
2014). Along with quality control systems, stopping rules
have also been proposed in a number of human computa-
tion tasks to control the number of worker responses needed
for individual questions and to achieve maximum efficiency
with respect to accuracy (Abraham et al. 2014).

While there are many methodologies to cope with noisy
and unreliable human data in crowdsourcing, there has not
been much research specifically on broadening and experi-
menting with multiple types of input elicitation, that is, the
type of information asked from crowd members regarding
a particular question. This direction appears to be promis-
ing. One study investigating crowdsourcing to annotate data
into clusters found that simple changes to the worker inter-
face could have a significant impact on the quality of data
collected and on the cost spent by crowdsourcers (Wilber,
Kwak, and Belongie 2014). Furthermore, a study in the
field of computational social choice investigated input elic-
itation in the context of a crowdsourced participatory bud-
geting problem, and found that presenting participants with
different subjective scales and interfaces produced varying
results (Benade 2018). Another study about collecting top
group preferences found that using rankings to help refine
the scores of ratings can better infer top-k results (Li, Zhang,
and Li 2018).

The fields of sociology and economics have investigated
other phenomena that may play an influence on how to bet-
ter collect data from humans. There have been a variety of
interesting predictive abilities of crowds discovered, includ-
ing accurate predictions by mere recognition (Herzog and
Hertwig 2011). A study related to crowd wisdom found that
individuals perform better at predictive tasks with a process
called “dialectical bootstrapping”, which involves individ-
ual participants answering the same question multiple times
(Herzog and Hertwig 2009). Another study found that when
predicting the outcomes of NFL games, crowds performed
better when participants were prompted to estimate the final
score instead of which team would cover the point spread
(Simmons et al. 2011). This suggests the way that questions
are presented to individual participants could influence the
quality of the resulting collective estimates.

Researchers have recently investigated how aggregation
methods from computational social choice can enhance the
accuracy of collective estimates. For example, in (Mao, Pro-
caccia, and Chen 2013) popular voting rules such as plu-
rality, Borda rule (Brandt et al. 2016), and Thurstone’s
model (Thurstone 1927) and the Kemeny consensus aggre-
gation model (Kemeny and Snell 1962) were applied to
solve ranking problems including ordering images based
on the number of dots they contain. This and other stud-
ies (e.g., (Werbin-Ofir, Dery, and Shmueli 2019)) have con-
cluded that the quality of the collective ranking depends on
the method used and the context of the problem. Other works
have devised specialized consensus aggregation methodolo-
gies to enable the extraction of accurate collective deci-
sions in highly distributed decision-making contexts (Dwork
et al. 2001; Yoo, Escobedo, and Skolfield 2020). Of par-
ticular interest to the present study are (Moreno-Centeno
and Escobedo 2016) and (Fishbain and Moreno-Centeno
2016), which devised extensions of the Kemeny-Snell rank-
ing distance and the Cook and Kress rating distance, respec-
tively. These two generalized measures were derived from
axiomatic foundations for guaranteeing that individual rank-
ings and ratings, respectively, receive equal voting power in
the aggregation, independent of how many objects they eval-
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uate. The implications of these axiomatic foundations could
be beneficial in crowdsourcing, where participants often do
not evaluate exactly the same set of objects due to time lim-
itations and where a high number of objects must be evalu-
ated altogether.

Overall, research has indicated many potential ways to
improve the process of collecting and aggregating crowd-
sourced data. While there are many strategies being cur-
rently employed, a review of the literature suggests that this
challenge can be addressed by collecting richer data from
individuals. Additionally, previous work suggests that spe-
cialized aggregation methods for integrating this data should
be considered for making good use of this information.

Experimental Design
In order to evaluate the research questions proposed, we
developed a human computation experiment that involved
collecting cardinal and ordinal inputs. Estimating the num-
ber of dots in an image is considered a benchmark task in
human computation, as it produces a high amount of vari-
able results among participants, but, nevertheless, tends to
return highly accurate results when a large enough num-
ber of participants evaluates the same images (Horton 2010;
Mao, Procaccia, and Chen 2013). We therefore chose a dot
estimation activity to measure the impact of different input
elicitation modalities and aggregation methods.

When prompting a group of people to collectively answer
a question, the way in which the question is framed can influ-
ence the collective decision. To test this theory, we prompted
participants questions in both cardinal and ordinal formats
to see how the way questions are framed influences collec-
tive results. There are multiple logically equivalent ways to
collect ordinal information (Chen et al. 2013). One efficient
way to do this is to collect a ranking of multiple alternatives,
as this method obtains multiple pairwise comparisons at a
time. Hence, ordinal inputs were elicited by asking partici-
pants to rank a subset of images by the number of dots they
contain. Cardinal inputs were elicited by asking participants
to provide a numerical estimate of the number of dots con-
tained in each of the same images. Participants’ inputs con-
tributed to four larger problems of ranking 30 images from
least to greatest number of dots contained and of estimating
the number of dots in each of the 30 images.

The experiments were designed to observe how collective
estimates change with problem size. The study asked partic-
ipants four problems of varying sizes, specifically 2-image,
3-image, 5-image, and 6-image problems, each with its own
data set of 30 images. For a specific problem size, all 30 im-
ages are seen the same number of times; however, this fre-
quency varies across the problem sizes. When the data ob-
tained from all 300 participants are considered, all images
are seen 20 times in the 2-image problem, calculated as x =
300 participants/ (30 images/ 2 images seen per participant).
Similarly, all images are seen 30, 50, and 60 times in the
3-image, 5-image, and 6-image problems, respectively.

In each problem data set, each image has a unique number
of dots, ranging from 50 to 79 dots. This range was chosen
primarily to make the ordinal estimation task roughly as dif-
ficult as the cardinal estimation task. This can be explained

as follows. Participants see only a small subset of the 30
images in each problem data set—specifically 2, 3, 5, or 6
images. Because these subsets are assigned randomly, it is
possible for some participants to be assigned ordinal estima-
tion tasks requiring comparatively less effort. For example,
in the 2-image problem, one participant could be assigned
the 50-dot and 79-dot images, which would represent a rel-
atively simpler task than that of another participant who is
assigned the 50-dot and 55-dot images, whose separation is
narrower. Along this line of reasoning, a broader dot range,
say of 50 to 200, may engender ordinal estimation tasks that
are relatively trivial to complete. In summary, the range of
dots contained in each of the four problem data sets was 30,
which tended to provide nontrivial ordinal estimation tasks,
as can be seen for example in Figure 1a. It is also worthwhile
to remark that participants were not explicitly incentivized to
manually count the number of dots in each image, i.e., to do
well in the cardinal estimation task. That is, workers did not
receive extra compensation for providing accurate results.

Web Application

A web application and user interface were developed to col-
lect ordinal and numerical estimates from participants in the
experiment. The application was then published as an activ-
ity on Amazon MTurk, a popular crowdsourcing platform
(Buhrmester, Kwang, and Gosling 2011). Each person who
accepted our activity was shown an experiment briefing page
and then was prompted to type their MTurk ID to enter the
activity. Once a new participant entered the activity, the par-
ticipant was asked to complete all four varying-size prob-
lems; the order the problems appear was randomized. The
images shown to participants under a specific problem were
drawn from the next available segment of a previously gen-
erated random permutation of the 30 images. For example,
if the previously generated random permutation of the 30
images was (79,78,...,50) in the 2-image problem and a pre-
vious participant received images 79 and 78, then the next
participant would be assigned images 77 and 76.

Each problem asked the participant to first rank the im-
ages by the number of dots they contain and then to provide
numerical estimates of how many dots are in each individ-
ual image. Numerical estimates were elicited by showing the
same images from the ordinal estimation tasks, but shown
one image at a time and in a randomized order—this was
done to ensure that cardinal estimates are not necessarily
anchored to the order indicated by the participant answers
to the ordinal estimation task. The user interface for the or-
dinal estimation of each question is shown in Figure 1a, and
the numerical estimation of each question is shown in Fig-
ure 1b. If a participant did not complete the task correctly, he
or she was prompted to try the same question again. For the
cardinal and ordinal estimation questions, participants had
a chance to edit or change their answers before submitting
them in case they made a mistake. Throughout the duration
of the activity, the time it took each participant to complete
each individual task was recorded and stored for analysis. At
the end of the study, participants were asked to fill out a brief
demographic questionnaire. Finally, they received a code to
claim their financial compensation (approximately $1.00 for
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(a) Interface for ordinal estimation (b) Interface for cardinal estimation

Figure 1: User interface for estimation tasks

5 minutes of work).

Participants

A total of 300 participants completed the study. Participants
were recruited from Amazon MTurk. Data from participants
that started the study, but did not finish all of the questions,
were removed. The demographic survey was completed by
288 of the 300 participants. The average age reported was
36.8, with a median age of 34. A total of 170 of them re-
ported their gender as male, 117 reported female, and 2
reported their gender as other. Education level varied sig-
nificantly among participants: 1 participant had education
equivalent to less than a high school degree, 43 had com-
pleted high school/GED, 51 had completed some college,
29 had a 2-year degree, 127 had a 4-year degree, 32 had a
master’s degree, 1 had a doctoral degree, and 5 had a profes-
sional degree. A total of 236 participants reported they were
employed, and 52 reported they were unemployed. A total
of 286 participants were native English speakers and 2 were
non-native speakers. Finally, a total of 83 participants re-
ported they had completed similar estimation tasks and 205
reported they had not.

Aggregation Methods

This section introduces the aggregation methods used in the
experiments. Beforehand, some notation conventions used
throughout the paper are described. Let a� and b� denote
the ordinal and cardinal estimate vectors, respectively, gath-
ered from participant �. Also, a�i and b�i represents the rank
position and cardinal estimation value of alternative i from
participant �, respectively. The subset of alternatives (i.e.,
images) evaluated in a (resp., b) is denoted as Va (resp., Vb)
and the set of participants is denoted as L. Ordinal estimates
are assumed to be strict (i.e., ties are not allowed).

Optimization-Based Models

Ordinal Aggregation (Ranking Aggregation) The Ordi-
nal Aggregation (OA) model is a ranking-based aggregation
model, which minimizes the Normalized Projected Kemeny-
Snell distance for incomplete rankings, written here suc-

cinctly as dNPKS (Moreno-Centeno and Escobedo 2016)
and defined as follows:

dNPKS(a
1,a2)=

⎧⎨
⎩

dKS(a1|(V
a1∩V

a2 ),a
2|(V

a1∩V
a2 ))

n̄(n̄−1)/2
if n̄ ≥ 2,

0 else,

where n̄ := |Va1

⋂
Va2 | and a1|(Va1∩Va2 ) and a2|(Va1∩Va2 )

denote the projections of each ranking onto the sub-
set of alternatives evaluated in both rankings a1

and a2. The original Kemeny-Snell distance (Ke-
meny and Snell 1962), defined as dKS(a

1,a2) =
1
2

∑n
i=1

∑n
j=1

∣∣sign(a1i − a1j )− sign(a2i − a2j )
∣∣, counts the

number of pairwise inversions between two rankings. The
OA consensus aggregation (i.e., Kemeny) model is defined
as follows:

min
u

|L|∑
�=1

dNPKS(a
�,u)

where u is a candidate aggregate ranking.

Cardinal Aggregation (Rating Aggregation) The Cardi-
nal Aggregation (CA) model is a rating-based aggregation
model, which minimizes the Normalized Projected Cook-
Kress distance for incomplete ratings, written here suc-
cinctly as dNPCK (Fishbain and Moreno-Centeno 2016)
and defined as follows:

dNPCK(b1, b2)=

⎧⎨
⎩

dCK(b1|(V
b1

∩V
b2

),b
2|(V

b1
∩V

b2
))

4R·
⌈ |V

b1
∩V

b2
|

2

⌉
·
⌊ |V

b1
∩V

b2
|

2

⌋ if n̄ ≥ 2,

0 else,

where R is the range of the ratings. The original Cook-Kress
distance (Cook and Kress 1985), defined as dCK(b1, b2) =
1
2

∑n
i=1

∑n
j=1

∣∣(b1i − b1j )− (b2i − b2j )
∣∣, calculates the pair-

wise differences of intensity between ratings. The CA con-
sensus aggregation model is defined as follows:

min
r

|L|∑
�=1

dNPCK(b�, r).

where r is a candidate aggregate rating.
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Cardinal and Ordinal Aggregation The Cardinal and
Ordinal Aggregation (COA) model jointly aggregates a set
of ratings and a set of rankings by utilizing both dNPKS

and dNPCK and giving equal weights to the two modalities
of information. The aggregate rating-ranking solution ob-
tained is logically coupled. Specifically, this consensus ag-
gregation model finds the rating r and the ranking induced
by ordering the values of r in non-increasing order, written
as rank(r), which together yield the minimum cumulative
ranking-rating distances to the multimodal inputs. The COA
consensus aggregation model is defined as follows:

min
r

|L|∑
�=1

dNPCK(b�, r) +

|L|∑
�=1

dNPKS(a
�, rank(r)).

Separation-Deviation Aggregation The Separation-
Deviation (SD) model is another multimodal model that
takes into account the difference between the pairwise com-
parison of two alternatives i and j in the aggregated outcome
and each participant’s evaluations (separation)—given by
the difference of intensities in ratings, as in dNPCK—and
the difference between the value of alternative i in the
aggregated outcome and in each participant’s evaluation
(deviation) (Hochbaum 2010). In the consensus aggregation
model, the separation is penalized by a function s�ij and the
deviation is penalized by a function d�i . The model can be
mathematically formulated as follows:

min
r

|L|∑
�=1

(

n∑
i,j=1

s�ij((ri − rj)− (b�i − b�j)) +

n∑
i=1

d�i(ri − b�i))

where ri represents the rating value of alternative i in the
candidate solution.

All consensus aggregation models were solved using spe-
cialized mixed-integer and integer linear programming mod-
els specified in (Hochbaum and Levin 2006a; Fishbain and
Moreno-Centeno 2016; Escobedo, Hochbaum, and Moreno-
Centeno 2020; Yoo and Escobedo 2020).

Traditional Voting Rule-Based Methods

Plurality Rule The plurality rule selects an alternative
with the most amount of first place votes. To obtain a com-
plete ranking with this rule, the candidates are ordered based
on the number of first-place votes they receive.

Borda Rule The Borda rule assigns a score to each can-
didate in a ballot according to how many candidates it de-
feats and then determines a complete ranking from the or-
dered candidate scores summed over all ballots (Brandt et
al. 2016).

Copeland Rule The Copeland rule chooses the alternative
with the highest number of pairwise wins minus defeats, i.e.,
Copeland scores. To obtain a complete ranking, candidates
are ordered by non-increasing Copeland scores.

Average

The aggregated rating r from the average method is:

r =

(∑|L|
�=1 b

�
1

|L(1)| ,

∑|L|
�=1 b

�
2

|L(2)| , ...,

∑|L|
�=1 b

�
n

|L(n)|

)
.

where L(i) ⊂ L denotes the subset of participants who eval-
uated candidate (image) i.

Median

The median method finds the halfway point of the numerical
estimates after arranging the estimates in order from least to
greatest. Specifically, assuming |L(i)| is odd, the aggregated
ranking r from the median method is:

r =
(
b̄1 |L(1)|+1

2
, b̄2 |L(2)|+1

2
, ..., b̄n |L(n)|+1

2

)
where b̄ij is the jth value in the list of arranged estimates of
alternative i, sorted from least to greatest.

Results

In this section, we present and analyze the results of the ex-
periment by measuring how close the collective ordinal esti-
mates and collective cardinal estimates obtained under each
aggregation method are to the respective ground truths. All
featured aggregation models are used for the ordinal estima-
tion task; however, only the cardinal aggregation, cardinal
and ordinal aggregation, separation-deviation, average, and
median methods are tested for the cardinal estimation task
since it was not immediately evident how to transform or-
dinal inputs for use by the OA model and by the traditional
voting methods.

Before proceeding, we discuss a useful concept for gaug-
ing the goodness of the participant-to-image distributions
in the experiments. First, let G = (V,E) be the pairwise-
comparison (undirected) graph associated with the set of
evaluation inputs. The node set V is comprised of the ob-
jects (i.e., images) being evaluated; its edge set E is con-
structed by drawing an edge (i, j) when at least one of the
participants directly evaluates both i and j. The number of
hops between i ∈ V and j ∈ V in G is defined as the length
of the shortest path between the two nodes (Hochbaum and
Levin 2006b). A maximum number of two hops between all
pairs of objects is recommended for obtaining good collec-
tive results (Hochbaum and Levin 2010). The robustness of
the relative comparison between i and j is expected to dete-
riorate for higher numbers of hops. As an example applica-
tion of this concept, when images i and j are evaluated by
one person, j and k are evaluated by a different person, and
no one evaluates i and k, there is one hop between i and j
(and j and k) and two hops between i and k. Table 1 shows
the number of hops in the experiment. It shows that display-
ing more images at a time allows more pairs of alternatives
to be evaluated, which tends to increase the connectedness
of the pairwise-comparison graphs. Note that the minimum
number of hops is always 1.0, since there is at least one com-
parison of two images completed by each participant.
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Number of times each image was seen
Problem size 5 10 15 20 25 30 35 40 45 50 55 60

2-image avg 2.29 1.75 1.60 1.51
max 4.00 3.00 2.75 2.00

3-image avg 1.74 1.49 1.33 1.23 1.16 1.11
max 3.00 2.00 2.00 2.00 2.00 2.00

5-image avg 1.48 1.23 1.12 1.06 1.03 1.01 1.01 1.00 1.00 1.00
max 2.00 2.00 2.00 2.00 2.00 2.00 1.93 1.71 1.40 1.00

6-image avg 1.39 1.15 1.06 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
max 2.00 2.00 2.00 2.00 1.97 1.71 1.34 1.14 1.05 1.02 1.00 1.00

Table 1: Average number of hops in pairwise comparison graphs calculated for different segments of the data

Performance of Aggregation Methods

The overall experimental results are shown in Figures 2
and 3. The performance of the aggregation methods on or-
dinal estimation is quantified via the normalized projected
Kemeny-Snell distance between the ground truth and the
collective ordinal estimates (aggregate ranking); the perfor-
mance of the aggregation methods on cardinal estimation is
quantified via the normalized Euclidean distance between
the ground truth and the collective cardinal estimates (ag-
gregate rating). Hence, the shorter the distance, the better
an aggregation model performs. To calculate the number of
pairwise reversals between each collective ordinal estimate
and the ground truth ranking, the normalized Kemeny-Snell
distance should be multiplied by 435 = n(n− 1)/2 (where
n = 30, the number of images in each problem data set).
The difference in the number of dots between each collective
cardinal estimate and the ground truth numerical values is
obtained by multiplying the normalized Euclidean distance
value by the range of the ground truth values, in this case 29.

Figure 2 demonstrates that the performance of the aver-
age and median methods in the ordinal estimation tasks is
consistently in the bottom-three positions. Overall, the tra-
ditional voting rules did not perform as well as consensus
aggregation methods. The top-three performances in these
tasks were achieved by the two multimodal models, SD and
COA, and interestingly by the cardinal-input consensus ag-
gregation model, CA. The latter results suggest that, when
the intensities of preference are factored into the aggrega-
tion, cardinal inputs can be valuable at performing ordinal
estimation tasks. Figure 3 demonstrates that in the cardinal
estimation tasks, COA and the average method outperform
other cardinal aggregation methods; specifically, COA per-
formed better when each image was evaluated fewer than 30
times, and the average method did better when each image
was evaluated by 30 or more times. Overall, COA outper-
forms other consensus aggregation models in both types of
tasks. This suggests that integrating multimodal information
(ordinal and cardinal inputs) can help attain more accurate
collective estimates.

Effect of Problem Size

Recall that, for each exercise, a participant is looking at 2, 3,
5, or 6 images at a time. As illustrated in Figure 2, showing
more images at a time (i.e., a larger problem size) helps at-
tain a collective ordinal estimate that is closer to the ground

truth. Specifically, Figure 2(a) shows the distance between
the ground truth ranking and the aggregate ranking when
two images are shown at a time and Figure 2(d) shows the
distance when six images are shown at a time. A plausible
reason for this is that, when two images are seen, there are
only two possibilities of ordering them: the correctly ordered
pair or the inverse ordering of the pair. In contrast, when six
images are seen, there are 720 possibilities of ordering them.
Although it is very difficult to order the six images perfectly,
participants may order a large number of pairs correctly due
to the implicit pairwise comparisons in a ranking. Further-
more, a more highly connected graph of comparisons is ob-
tained by exercises where more images are evaluated. As
shown in Table 1, with all 300 users, the average number
of hops is 1.0 in the 5-image and 6-image estimation tasks,
which means every pair of alternatives has been evaluated
by at least one person (i.e., the pairwise comparison graph is
fully connected). Hence, despite the higher cognitive load of
ordering more images, the collective ranking obtained from
these larger size problems yielded closer approximations to
the ground truth. Problem size did not appear to affect the
quality of cardinal estimation to the same degree, due to the
fact that numerical estimation was done one image at a time.

While showing more images at once improves ordinal es-
timation tasks in our experiment, there may be a maximum
on how many objects can be presented at once before the
quality of estimates deteriorates. Psychologists termed this
phenomenon “choice overload”, which suggests that pre-
senting people too many options at a time can result in the
depletion of cognitive resources (Reed et al. 2011). Present-
ing people 6 images to rank at a time provided the highest
accuracy in this experiment, however, there is likely a limit
not reached in this study on how many images can be effi-
ciently ranked at once. The joint aggregation model was par-
ticularly effective at completing the ordinal estimation task
as problem size increased.

Efficiency of Crowdsourcing

Based on the concept of the wisdom of crowds, the qual-
ity of the collective estimates obtained by each aggregation
method should improve as the number of times each image
is seen increases. To test this hypothesis, we segmented the
data based on the number of times each image in the prob-
lem set is evaluated, in increments of 5, in order to show
the effects of varying crowd size. For each segment, 2kCi
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(a) 2-image Ordinal Estimation Task (b) 3-image Ordinal Estimation Task

(c) 5-image Ordinal Estimation Task (d) 6-image Ordinal Estimation Task

Figure 2: Accuracy of collective ordinal estimation

collective estimates are calculated, where k is the problem
size and i = 1, 2, ..., k (i.e., we choose i subgroup of users
from total of 2k groups and calculate collective estimates for
each subgroup), their distances to the ground truth are calcu-
lated, and the corresponding average is reported. Note that
the possible range of the number of times each individual
image was evaluated increases with problem size (since in-
creasing the number of images seen by each participant also
increases the times each image from the problem set is seen
overall). As shown in Figure 2 and 3, the more times each
image was evaluated, the more accurate the aggregate esti-
mate generally became for both the ordinal and cardinal esti-
mation tasks. As can be seen in the figures, the improvement
of the collective ordinal estimates followed a more steady
and consistent trend than the collective cardinal estimates.

In the cardinal estimation task, the average method signif-
icantly outperforms other methods when images are evalu-
ated roughly over 30 times. This suggests that in this activ-
ity, averaging may be the best way to determine the cardinal
estimates when there are sufficient resources available to re-
cruit a large number of participants. Conversely, consensus
aggregation models performed significantly better than the
average and median methods when each image was evalu-
ated by very few participants. However, their performance
did not increase as sharply as the average method for higher
numbers of participants. Indeed, in the 5-image cardinal es-
timation task, there is only a slight increase in performance
by the CA, SD, and COA models between the collective esti-

mates obtained when images are viewed 50 times instead of
15 times. This suggests that for these three consensus aggre-
gation models, it may not be worthwhile to add participants
beyond a certain point. For example, in the 6-image cardi-
nal estimation task, the COA collective estimate obtained
when images were viewed only 10 times was nearly identi-
cal to the performance achieved by the average method with
three times the number of individual image views; however,
in this case the COA performance worsened when more par-
ticipants viewed the images. While such observations sup-
port the increased efficiency of consensus aggregation meth-
ods, they also raise a question of how the appropriate crowd
size should be determined when eliciting multimodal inputs.
In particular, crowdsourcers may consider applying multi-
modal methods when fewer resources and/or eligible partic-
ipants are available for performing tasks. An additional fu-
ture question is to consider integrating the average method
with a consensus aggregation model and testing how the re-
sulting multimodal model performs at determining collec-
tive estimates in other similar tasks.

Discussion
This section reviews important observations related to the
research questions, and limitations of the research.

Benefits of Utilizing Multimodal Information

Our experiment results demonstrated that having multi-
modal information helps better approximate the ordinal and
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(a) 2-image Cardinal Estimation Task (b) 3-image Cardinal Estimation Task

(c) 5-image Cardinal Estimation Task (d) 6-image Cardinal Estimation Task

Figure 3: Accuracy of collective cardinal estimation

cardinal ground truths. Because certain modalities may be
more useful to different people (e.g., people may provide
more correct ordinal estimates but less accurate numerical
estimates, or vice versa), having both cardinal and ordinal
estimation complements differing strengths. Considering all
tested estimations tasks, the cardinal and ordinal aggregation
model exhibited the most consistent performance among the
tested methods. This supports the notation that eliciting and
aggregating multimodal information can help complete the
separate types of estimation tasks. Furthermore, we found
that aggregating cardinal information may yield more accu-
rate ordinal estimates (using CA, a consensus aggregation
model that focuses on the differences between pairwise esti-
mates rather than the actual numerical values).

Displaying More Images at a time

Showing more images at a time leads to more accurate col-
lective outcomes. It is reasonable to hypothesize that dis-
playing more images could burden cognitive ability so that
the estimating accuracy may deteriorate. However, our ex-
periments did not reach the point at which the collective or-
dinal estimates markedly deteriorate. We suspect that may
occur when 7-9 images (or more) are displayed, based on
Millers law (Miller 1956).

Supporting the Idea of the Wisdom of Crowds

Our research empirically supports the concept of the wis-
dom of crowds. Specifically, the results demonstrated that

gathering information from more participants led to more
accurate collective estimates under a variety of aggregation
methods. That said, optimization-based aggregation meth-
ods were able to attain better estimates most efficiently.

Limitations

Our findings are admittedly limited in terms of scope. The
main takeaways apply so far only to the featured experiment
on dot estimation, and in the future these methods will need
to be extended to other crowdsourced activities. To extend
these results, it will be useful to evaluate how input elicita-
tion and aggregation methodologies affect prediction activi-
ties, grading tasks, and other classification problems. More-
over, no time limit was given in the experiment, which may
have allowed participants to manually count the number of
dots instead of estimating them. According to (Maddalena
et al. 2016), the quality of responses could actually increase
when participants are asked to complete a task in a prede-
fined amount of time. Future work will look to limiting com-
pletion times in order to test this hypothesis.

Conclusions
This paper investigates how the quality and efficiency of
crowdsourced collective estimates can be improved by in-
tegrating multiple modalities of input. To the best of our
knowledge, this is the first experiment which applied both
optimization-based consensus aggregation models and tra-
ditional voting-based methods to aggregate estimations from
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hundreds of people. The main contributions of the paper are
showing empirically that (i) given a generalizable bench-
mark human computation task, collecting and aggregating
both ordinal and cardinal information has the potential to im-
prove crowdsourcing results and (ii) all aggregation models
tend to perform better as crowd size increases, which aligns
with the idea of the wisdom of crowds, but optimization-
based models can achieve this most efficiently.
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