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Abstract

This paper provides and evaluates a new paradigm for collab-
orative human-robot operation in search and rescue-like set-
tings with information asymmetry. In particular, we focus on
settings where the human, a crowdworker in our case, is used
as a sensor, providing the route-planning module with es-
sential environmental information. In such settings, the abil-
ity to predict the expected performance of the collaborating
crowdworker in real-time is instrumental for maintaining a
continuously high level of performance. Through an exten-
sive set of experiments with crowdworkers recruited and in-
teracted through Amazon Mechanical Turk, we show that ef-
fective online prediction is indeed possible, however only if
distinguishing between two subpopulations of crowdworkers,
termed ”operators” and ”sensors”, applying a different pre-
diction model to each. Furthermore, we show that even the
classification of crowdworkers to the two types can be car-
ried out successfully in real-time, based merely on the first
two minutes of collaboration. Finally, we demonstrate how
the above abilities can be used for a more effective workers’
recruiting process, resulting in a substantially improved over-
all performance.

Introduction
Autonomous robots are on the rise nowadays and the list
of domains and applications where they are used has be-
come quite impressive. Examples are numerous, and in-
clude, among others, surveying the environment for threats
(Lösch et al. 2018), cleaning up the pollution in oceans
(Rahmawati et al. 2019), mapping (Faessler et al. 2015), vac-
uuming and cleaning (Jones et al. 2019) and playing soc-
cer to entertain audiences (Kitano et al. 1997). Common
to all these robots, which vary significantly in size, func-
tionality, mobility and cost, that they can be programmed
to perform some tasks with little to no human intervention
or interaction. Still, when the environment they are operat-
ing in is highly dynamic and unpredictable, it may become
too complex for them to decipher and understand the hap-
penings (Winter et al. 2017). For example, consider indoor
localization and navigation, where seemingly the environ-
ment is highly structured. Even here, various unexpected
can happen, e.g., electronic doors that fail to open as they
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should, obstacles completely blocking the path, and counter-
intuitive (room or level) numbering systems such as a miss-
ing 13th floor in a building (Tomko and Richter 2015). The
help of a person can thus take either the form of resolving
problems, help in decision making regarding the preferred
course of operation, and providing environmental informa-
tion that cannot otherwise be collected or properly inter-
preted by the robot (Ghandour et al. 2016).

In this paper we consider the setting where the robot de-
pends on a person to provide it with temporal task-related
crucial information unfolding along with the task, that is oth-
erwise unavailable to it. In particular, we focus on domains
where the nature of the task is robot-navigation, yet route
planning heavily relies on knowing what events take place
in the space (or plain) along time. For example consider
robotic exploration missions (Sampedro et al. 2019; Wang et
al. 2011) such as Urban Search and Rescue (USAR) (Nour-
bakhsh et al. 2005) or planetary exploration (Apostolopou-
los et al. 2001). Here, the interpretation of images taken by
the robot’s sensors typically requires the visual perception
skills of humans (Kosti, Sarne, and Kaminka 2014), e.g.,
identify the remainings of a crashed airplane in the clutter,
point to suspected locations where an intruder may be hid-
ing and identify survivors in a disaster area. Still, once this
information is transferred to the robot, the mission planning
would be better carried out by the robot as its processing
capabilities are superior. Meaning that the collaborating per-
son functions as a human sensor rather than a robot operator
(Lewis et al. 2009).

Whenever the task of acting as a human sensor does not
require much expertise and skill, it can be easily outsourced
to crowdworkers in crowdworking platforms (e.g., Amazon
Mechanical Turk), benefiting from their high availability and
relatively cheap cost (compared to a trained operator). More-
over, crowdwokers can be employed on an ad-hoc basis,
and easily replaced on-the-fly if deciding that they are not
efficient enough. Alongside the many advantages of using
crowdworkers as human sensors, some disadvantages cannot
be ignored. Workers may vary substantially in their capabili-
ties and pace. They may fail to understand the task. They are
typically less committed to the task, compared to permanent
workers, and at times attempt to increase their revenues by
working on several tasks in parallel, paying less attention to
each (Elmalech et al. 2016). Furthermore, performing as a
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sensor is a rather monotonous task and people have an in-
herent difficulty to remain focused in such (Krueger 1989).
Therefore having the ability to identify poor performance
on the fly or predict if a worker is likely to perform poorly
throughout the task is crucial for the task’s success, as poorly
performing working can be replaced.

In this paper, we report the results of attempts to develop
models for predicting crowdworkers’ performance as a sen-
sor aiming to enhance a robot’s route planning. This kind of
prediction is highly challenging, as it needs to be carried out
based on a short interaction with the worker, and even for
that short interval we do not have any measure reflecting the
worker’s efficiency.1 For example in USAR applications, the
system may realize in real-time whether in locations visited
based on an indication received from the worker there were
indeed survivors but cannot tell if there were any in loca-
tions not indicated as such. Therefore, even if one’s perfor-
mance in a short interval of operation is fully indicative for
her performance throughout the task (which is certainly not
obvious, since, as mentioned above, performance may dete-
riorate over time due to boredom or shifts in the worker’s
attentional state), reasoning about performance in that short
interval is not trivial by itself (Nimni and Sarne 2020).

As an experimental infrastructure, we use a system emu-
lating the use of a robotic boat aiming to deter pelicans from
fish ponds, a problem affecting farmers worldwide. Here, the
goal of the human sensor is to identify pelicans as they ar-
rive and provide their location information to the boat. For
the prediction models, we use a rich set of features that can
be collected in the above-mentioned environment and four
quite standard machine learning methods: Linear Regres-
sion, Random Forest, AdaBoost, and SGD. Alas, we find
that the resulting prediction is poor and quite noisy. Interest-
ingly, we find that effective prediction can be executed by
distinguishing between two subpopulations of human sen-
sors and carrying out the prediction for each of the two sep-
arately. Workers of the first population indeed function as
instructed and provide a proper indication of events based
on their best effort. Meaning that the differences in their
performance are fully attributed to how attentive they are
to the task and how hard they try. Workers of the second
population, on the other hand, limit the number of events
they report at any given time, attempting to take full con-
trol over the robot’s route rather than benefiting from the
robot’s route-planning capabilities. The prediction models
developed are complemented by an effective classification
model that enables classifying a new worker to one of the
two groups merely based on the first two minutes of oper-
ation. This allows us to decide in real-time if we want to
continue employing this worker or replace her with a newly
recruited one. Applying such a dynamic allocation mecha-
nism on workers in our experiments results in 67 percent
performance improvement, compared to the use of static as-
signment.

1If having the ability to properly identify the events guiding the
route planning, there would not be a need for the human’s help in
the first place.

Related Work
The research reported in this paper is within the intersection
between human-robot interaction (HRI) and crowdsourcing.
HRI research suggests a plethora of designs aiming to im-
prove an operator’s control of a robot (Sheridan 2016). One
aspect of the interaction that is especially important in our
case is autonomy, in particular the level the human and the
robot interact and the degree to which each is capable of act-
ing autonomously, on a scale ranging from direct control to
peer-to-peer collaboration. while with direct control the fo-
cus is on reducing the cognitive load of the operator, in the
fully collaborative scheme it is on creating robots with the
appropriate cognitive skills to interact naturally or efficiently
with the operator (Goodrich, Schultz, and others 2008), the
way information is exchanged between the human and the
robot, and the amount of situation awareness produced by
the interaction (Endsley 2016). Within the above line of
work, the closest to our model is the work of Bruemmer
et al (2004), focusing on evaluating mixed-initiative control
methods for novice operators of a search and rescue robot.
One particular finding of their work is that the system us-
ability can be enhanced through the addition of navigational
autonomy, freeing the user to focus on the search and rescue
task instead of robot navigation. This is exactly the mode of
operation we use in the research reported in this paper.

Many designs for robot-control incorporated the princi-
ple of adjustable autonomy, which enables a system to op-
erate in different autonomic conditions and transfer con-
trol to or between the system’s operators (Mostafa, Ahmad,
and Mustapha 2019). The transfer of control can be benefi-
cial whenever the robot is unable to perform the task with
complete autonomy (Zilberstein 2015) or when the impor-
tance of the task makes human intervention crucial (Pollack,
Tsamardinos, and Horty 1999). In particular, a robot can
benefit from the user’s experience and skill, having her guide
decision making whenever full enumeration of subspaces of
the full problem space is impractical, e.g., in planning and
scheduling (Alexander, Raja, and Musliner 2008). Similar
ideas can be found in Human-centered automation (HCA),
which offers the benefit of partially automating a system
when full automation is not possible, leaving the difficult-
to-automate parts of the system to humans hence increasing
operator acceptance of an autonomous system (Dorais and
Kortenkamp 2000). The main question however, in all the
above line of work, is when to transfer decision-making con-
trol from the robot to the user (Scerri, Pynadath, and Tambe
2002) and to what extent.

With the vast interest in crowdsourcing platforms, the use
of crowdworkers for enhancing robot operation is gradu-
ally increasing. For example, Moradi et al (2016) suggest
the use of crowdworkers’ human intelligence to train soc-
cer robots and improve their decision making process. Al-
mosalami et al (2018) use crowdsourcing-based interface in
order to ask people to operate a garbage-collecting robot at
beaches. Zhao et al (Zhao et al. 2019) use crowdsourcing to
help a robotic hand synthesize human physical skills. Much
like in our case, many of these applications use crowdwork-
ers in order to provide the system with otherwise unavailable
information. For example, Diamantas (2020) presents a new
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approach for resolving the kidnapped robot problem by ask-
ing followers on Twitter for information about its location,
and Chung et al (Chung et al. 2019) use crowdworkers to
alert the system if a simulated autonomous car is about to
make an accident.

Finally prior work provides much evidence for the fact
that crowdworkers are likely to employ a wide variety of in-
teraction styles with robots (Breazeal et al. 2013). However
alongside modes of control, there are various other consid-
erations that were found to be instrumental in using crowd-
workers in general, that should be taken into consideration.
For example,

while crowdsourcing platforms enable collecting fast and
cheap data, its quality is often questionable (Mason and Suri
2012). Furthermore, crowdworkers are human, and long se-
quences of the same monotonous tasks might intuitively re-
duce the quality of their work (Krueger 1989). Several ap-
proaches have been suggested in recent years for increasing
crowdworkers attention to the task, for example the use of
diversions containing small amounts of entertainment (Dai
et al. 2015) and the generation of dummy (artificial) events
throughout the task (Elmalech et al. 2016).

Model
We consider a standard search and rescue-like setting where
a robot needs to reach and handle events of a spatial nature
(Ito and Maruyama 2016; Lewis, Sycara, and Nourbakhsh
2019). New events occur on a timely basis and are charac-
terized by their location in the plane and the amount of time
they remain active. To handle an event, the robot needs to
physically reach its location while it is still active. The goal
of the robot is to handle as many events as possible, overall.

The robot is fully capable of navigating in the plane. Fur-
thermore, it is equipped with a planning module that up-
dates its route in real-time as new (full or partial, accurate
or noisy) information about current active events in its en-
vironment unfolds. Still, despite its many capabilities, it is
unaware of the appearance of events and their locations. In
order to receive such information the robot has to rely on
a human collaborator, who functions as a human sensor,
recognizing events on the fly and conveying this informa-
tion to the robot through a designated interface. The event-
recognition task is quite intuitive and can be performed by
crowdworkers, enabling various advantages associated with
such ad-hoc employment as discussed above. In particular,
the robot can easily recruit a new crowdworker, replacing an
existing one in case it believes the latter performs poorly as
a human sensor. The goal of the research reported in this pa-
per is thus to develop effective prediction models for crowd-
workers’ performance as a human-sensor, supporting such
crowdworker’s replacement on the fly.

Experimental Framework
As a testbed for our experiments, we used an experimental
framework simulating GPS-based robotic boat navigation in
fish ponds. The framework was developed as part of a larger
multi-institute collaboration aiming to provide solutions for
deterring massive fish-eater birds from the depredation of

fish ponds. Deterrence of migrating birds from fish ponds is
a fundamental challenge for ecologists, ornithologists, bird-
watchers and fish farmers across the world. These birds will
eat either the fish or the fish food, resulting in substantial
economic losses. In the US tens of millions of dollars are
lost annually due to birds (King 2005) and similarly in Eu-
rope (IUCN 1997). The use of the robotic system offers fish
farmers a continuous cost-effective and ecologically friendly
bird deterrence sustainable solution. When birds land on the
pond, they are scared away by a boat heading to their direc-
tion as quickly as possible, thus limiting the damage.

While ideally the input for the autonomous boat would
come from computer vision algorithms analyzing the video
collected from cameras placed around the pond, these capa-
bilities have not matured enough and suffer from inherent
limitations of separating the birds from the moving water
background and ”guessing” bird’s distance/location based
on its size. Therefore the boat’s navigation is being carried
out using a human-sensor (preferably crowdworkers, due to
their many advantages as enumerated at the beginning of the
paper), based on a schematic pond map and the transfer of
cameras output.

We use a web-based simulated version of the above sys-
tem, which was primarily developed for experimentation.2
In this system, new birds appear according to a pre-defined
scenario which specifies their arrival time, specific location
at the pond, and the time they will leave by themselves if not
deterred by the boat by then. Birds are deterred whenever the
boat gets near them (i.e., within some pre-set distance). To
emphasize this capability the boat is enclosed with a circle
representing its deterrence radius and once a bird is within
the circle, it will be deterred immediately and will not be
presented anymore (see Figure 1). Human sensors can see
the pond area, the boat and arriving birds (in their proper
location) through the system’s GUI. They can convey this
information to the system by clicking on the birds available
(marking). The indication for a bird marked is a small blue
circle next to it. If the bird leaves before deterred, the hu-
man sensor can ”unmark” it using a right-click. Any mark-
ing or unmarking event will activate the boat’s route plan-
ning algorithm, possibly resulting a route update. In the ab-
sence of any markings, the boat stops, i.e., becomes idle. The
joint goal (of the robot and the human sensor) is to deter as
many birds as possible. Hence the measure of performance
is the session score calculated as the number of birds de-
terred. Throughout the session, the system logs all marking
and unmarking events (including the coordinates and times-
tamp), the current planned route (continuously), the boat’s
location (continuously), and the time and location of every
bird deterring event.

The birds’ deterrence testbed is a good representation of
our problem domain: it contains a dynamic environment
where new events of a spatial nature (represented by the
birds that arrive and leave) need to be handled by a robot
(the robotic boat), where crucial information that is unattain-
able by the robot (bird locations) can be easily obtained by

2The testbed was developed using IIS for the server-side and
Angular framework (HTML, CSS, Typescript) for the client-side.
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Figure 1: A Screenshot from the testbed used.

a crowdworker acting as a human sensor.

Experimental Design
We used the above testbed with a rectangular pond of size
500X1000 pixels. Session length was set to 15 minutes and
the number of birds within was 750,3 with random appear-
ance times throughout. Birds leave pattern (i.e., if not de-
terred) was set such that at every second a bird is still
present, it has a 4% chance to disappear. The robotic boat’s
speed was set to 62 pixels per second and the deterrence
radius was set to 20 pixels. These parameters were defined
as one of the representative realistic use cases in the larger
bird-deterrence project. For route planning we used a greedy
algorithm that always picks the minimum route among all
routes starting from the current location and reaching two
markings along the way. The algorithm is called on every
new marking or unmarking of a bird. Subjects were recruited
and interacted through AMT. Each participant received thor-
ough instructions on how to use our framework in order to
mark and unmark birds’ location, the game rules and her
goal in the game. This was followed by a short qualification
quiz and short training to make sure she controls the marking
technique. Compensation included a small show-up fee and
a bonus which linearly depended on the number of deterred
birds.

Results and Analysis
Overall we had 74 subjects initially requested to act as
human sensors (denoted ”sensors” onward). As explained
above, we base the performance of a sensor on the score she
achieves, measured as the number of birds deterred by the
robot. The average score obtained with the 74 subjects was
465. Since the total number of birds appearing in the ex-
periment is 750, the average score obtained is equivalent to
deterring 62% of the birds.

Performance Limits
While a 62% success might seem quite disappointing, we
emphasize that deterring all 750 birds is practically un-

3Making it very hard for a human sensor to mark all birds, hence
sensor’s performance becomes an issue.

achievable. To better understand this point recall that the
birds’ deterrence success is influenced by three factors. The
first is the completeness of the reporting made by subjects.
The second is the effectiveness of the underlying route-
planning algorithm used—in our case a greedy algorithm
that is not necessarily optimal for this kind of online event
allocation. Finally, even if continuously provided with com-
plete information and using optimal routes, there is no guar-
antee all birds will be deterred, as it is possible that the pace
of arriving birds, at times, is too high for the boat to reach
them all, given its speed.

In order to properly reason about the influence of the
above three factors, we present Figure 2, which unveils the
performance limits of using a human sensor in our setting.
Here, instead of using human subjects to report bird loca-
tions, we used a virtual sensor that provided the route plan-
ning algorithm with this information. The horizontal axis of
the graph corresponds to the percentage of birds reported by
the virtual sensor out of those present at any time and the
vertical axis is the overall number of birds deterred.4

Figure 2: Score/Number of birds deterred as a function of
the percentage of birds reported at any given time (i.e., cov-
erage) by a virtual sensor.

We use the term ”coverage” to denote the percentage of
birds reported by the sensor out of those present at any given
time.5 From Figure 2 we observe that, as one would expect,
there is a strong (positive) correlation between performance
and coverage. Still, even with 100% coverage the number
of deterred birds is 545, rather than the theoretical bound
of 750. Meaning that the navigation algorithm used and the
environmental conditions (boat speed and deterrence radius,
birds arrival rate and the time window they remain present)
account to not deterring 205 birds.

Indeed, deterring 545 birds in our setting is an upper
bound for human-sensor performance when taking the route
planning algorithm to be given. Interestingly, even without
the use of the sensor, the system can score quite substan-
tially. For example, continuously traversing the pond area in

4The specific birds to be reported were randomly picked out of
those currently present, according to the corresponding percentage
on the horizontal axis.

5Relating only to birds actually present, i.e., excluding mark-
ings indicating a bird where there is really no birds present.
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rectangular routes starting from its external perimeter and
towards the center point (and back) yields a score of 286
(derived experimentally), which is more than we managed
to achieve with the help of some of the sensors in our exper-
iments.

Score Prediction Challenges
Naturally, different sensors achieve different scores. Figure
3 depicts the score of the 74 subjects in ascending order. It
also includes the performance level achieved with the 100%
coverage virtual-sensor and the performance the system may
achieve even without using a human-sensor, as given above.
Interestingly, we find that the performance with few sensors
slightly exceeds the theoretical upper bound extracted with
a 100% reporting sensor. For now, we defer the discussion
on this phenomena. From the graph we observe that indeed
there is a substantial variance between subjects in terms of
the achieved score. Meaning that having the ability to pre-
dict individual score is highly advantageous—effective pre-
diction will enable filtering subjects and assigning the task
only to those who are likely to highly perform.

Figure 3: Score of each of the 74 subjects, ascending.

Predicting a new sensor’s score in our case, however, is
highly challenging for two primary reasons. First, the pre-
diction should be carried out based on a short interval of op-
eration. The greater the ratio between the total task’s length
and the amount of time used for prediction, the smaller is
the overhead associated with the sensor’s replacement. Fur-
thermore, if the sensor turns to perform poorly, the longer
the interval of operation used for prediction the greater the
loss (in terms of score) due to this poor performance. There-
fore an important prerequisite for effective prediction in the
context of our model is that the performance of the sensor
early in the task is strongly correlated with the overall per-
formance throughout the session, as can be seen in table 1
The first column of the table is the length of the initial inter-
val in the session (in minutes) for which we take score, and
the second is the correlation with overall scores when con-
sidering all 74 sensors. The third and fourth columns cor-
respond to the correlation obtained by omitting those 10%
and 20% of the sensors that seem to have the weakest re-
lationship between the score in their initial interval and the
score in the full session, respectively. These latter two mea-
sures enable reasoning about the extent of influence excep-
tions may have on the obtained correlation. From the table

initial operation r r r
(minutes) (all) (90%) (80%)

1 0.43 0.5 0.5
2 0.74 0.82 0.87
3 0.82 0.84 0.88
4 0.89 0.90 0.92
5 0.93 0.94 0.95

Table 1: Correlation between the score achieved during the
first i ∈ {1, 2, 3, 4, 5} minutes of operation and the overall
score in the task (i.e., over 15 minutes) for the 74 subjects

we observe that indeed there is a strong correlation between
the score achieved during the first few minutes of operation
and overall score. In particular, a relatively high correlation
is obtained even when considering only the first two min-
utes of operation. Therefore relying on the first two minutes
of operation is a good basis for predicting the score for the
entire session. Furthermore, the correlation does not seem to
improve much with the filtering of individuals (as reflected
in the third and fourth columns), providing further support
for the potential of producing a rather accurate prediction
based only on initial short experience with the sensor.

The second challenge in predicting the sensor’s score
throughout the session also results from the need to carry
out the prediction in real-time. While the above-reported
correlation results assure that the performance exhibited at
early stages is correlated with the performance throughout
the session, early-stage performance cannot be trivially mea-
sured. The system is unaware of the arriving birds nor their
locations—perhaps these may be figured out in retrospect,
however prediction is required in real-time to enable (and
benefit from) sensor-switch. Meaning that the system can
only base its prediction on measurable parameters that can
be extracted from the initial interval, potentially characteriz-
ing the user’s behavior throughout the session.

An important input the system can rely on for prediction is
the markings made by the sensors. Indeed the system would
not know if these are correlated with actual birds, whether
there are other (unmarked) birds present and whether some
of the already marked birds are no longer relevant as they
have already left. Still, as we show later on, this information
is invaluable for predicting performance. Other information
includes marking-cancellations (overall and overtime), the
number of seconds there are no markings available (hence
the boat is idle), the distance between the new markings’
locations and the boat’s location at the time of marking, and
length of the routes created by the route planning algorithm.

We use the above attributes (taken for the first two min-
utes of the session) as an input for prediction models devel-
oped with four standard Machine Learning (ML) methods:
Linear Regression (Chatterjee and Hadi 2009), Random For-
est (Segal 2003), Adaboost (Schapire 2013) and SGD (Bot-
tou 2010). Indeed, these Machine Learning algorithms were
developed for formal domains, which are materially differ-
ent from ours where the goal is to predict human behavior
(Shmueli 2017; Yahav, Shehory, and Schwartz 2018). Still,
Recent research has found much merit in integrating data
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science and behavioral models in the context of predicting
human choice behavior (Plonsky et al. 2017).

Our implementation used the scikit-learn Python pack-
age (Paper and Paper 2020), taking advantage if its Grid-
SearchCv (Paper and Paper 2020) for tuning and parameter
selection. The resulting models are based on 400 estimators
and max depth of 8 with Random Forest, 400 estimators and
a learning rate of 0.001 with Adaboost, and 1000 iterations
and α = 0.0001 with SGD.6

In order to evaluate the performance of the four models
we randomly divided our data (traces of 74 sensors that took
part in our experiments) to a training set (70%) and test set
(30%), calculating the correlation (R2) between the score
prediction received and the actual score. This process was
repeated 1000 times, taking the average of the R2 values
obtained with each prediction model. The results of the two
highest-performing methods are summarized in (the second
column of) Table2

Model First Interval All Intervals
Random Forest 0.15 0.19

AdaBoost 0.04 0.07

Table 2: Results of the highest performing models, for pre-
dicting the entire population’s score

The third column of the table reports the performance of the
same models, when the input is augmented in a way that
training is carried out based on all two-minutes intervals
spanning those sessions belonging to the training set (i.e.,
taking the first consecutive seven two-minutes intervals of
the 15-minutes session, and their achieved score rather than
merely the first interval). The advantage of this input aug-
mentation method is that it substantially increases the size
of the training set. On the other hand, the behaviors ob-
served within the additional training data do not fully rep-
resent the behaviors to be observed in the first two minutes
of operation of new sensors which performance needs to be
predicted. This latter weakness finds some support from the
non-perfect correlations found between the score in the first
interval and the entire session, as in Table 1. Still, in many
cases, as well as in our specific case, the advantages turn
to be greater than the disadvantages. Alas, even with the
slight improvement we obtain through input augmentation,
we conclude, based on R2 scores presented in the Table 2,
that the performance prediction with all models is quite poor.

Sensors versus Operators
The relative failure of standard machine learning methods to
predict sensors’ performance possibly suggests that there is
some inherent difference between different sensors’ marking
strategy which precludes the identification of a general pat-
tern. To investigate this hypothesis we turn back to a more
detailed analysis of the coverage parameter that was proven
instrumental in its influence over performance when exper-
imenting with the virtual sensor (see Figure 2). One inter-

6The rest of the parameters in each model are use the scikit-
learn defaults).

esting observation that can be drawn from the figure is that
the average performance obtained with human sensors (465
deterred birds) is equivalent to having the virtual sensor con-
tinuously report 44% of the birds that are present at any
moment. However, checking the actual coverage obtained
in the 74 sessions, we find that the average coverage was
36%. This significant difference can have two possible ex-
planations. The first is that there is a substantial variance in
individual coverage, hence a simple average is not indica-
tive. The second explanation is that some people’s markings
are strategic, meaning that they aim to influence (and possi-
bly optimize) the boat’s route. Indeed the variance in cover-
age is 498 (standard deviation is 22.3), supporting the first
explanation. For the second explanation we introduce Fig-
ure 4 which depicts the relationship between coverage and
score—each data point in the graph represents the coverage
(horizontal axis) and score (vertical axis) obtained by one
of the 74 sensors. From the graph we observe that there is
a poor correlation between coverage and score (r = 0.25).
The graph also includes the curve representing the score as
a function of coverage obtained with a virtual sensor (taken
from Figure 2). Indeed, the performance of some of the sen-
sors adheres to this curve, while others are very far from
it. Meaning that those latter subjects are not functioning as a
sensor in the sense of reporting everything (or a random por-
tion of what) they see. Instead they are applying some logic
in deciding which birds to mark. This external logic that
guides the choice of which birds to mark accounts, at times,
to an improvement in the achieved score compared to the
score with a virtual sensor associated with the same cover-
age level—Indeed, some of the sensors managed to achieve
a score greater than the score of a virtual sensor that reports
all birds. Many others have managed to achieve a score that
is more than twice the score of a virtual sensor associated
with a similar coverage level.

Figure 4: Score according to coverage percentage.

One interesting group of sensors emerging from the graph
is of those associated with coverage smaller than 33%, and
score higher than 400 (30 out the 74 subjects). Sensors in
this group are characterized by a very low coverage and
yet the great majority of these, manage to achieve a score
substantially greater than the expectations based on a vir-
tual sensor. In fact, the average score of the sensors from
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this group does not fall short from the average of all sensors
with greater (2-4 times) coverage. In order to better char-
acterize the behavior pattern of sensors of the latter group,
we went over the log files, replicating all sessions, manu-
ally exploring the reflected behaviors. Doing so, we found a
recurring pattern - sensors from this group repeatedly mark
1-3 birds at a time, wait for the boat to visit these locations,
then wait a few seconds, mark again 1-3 birds and so on.
Marking 1-3 birds at a time leave the boat route planning
module very little flexibility, and in most cases dictates one
or two possible routes. Meaning that the sensor is actually
controlling the boat’s route through her markings. One rea-
sonable explanation for the repeated few seconds waiting be-
fore marking additional birds is that the sensor is engaged in
some planning related to the next markings. Hence it is this
planning that accounts for the score performance those sub-
jects achieve, as even though these sensors provide the sys-
tem with very little information, the simple routes produced
based on this information turn to be highly efficient, in terms
of the scored achieved. Evidence for people’s tendency to be
in control can be found in various other general literature
from psychology and behavioral economics (Adler 1930;
Burger 1985). Therefore, we distinguish the sensors aiming
to control the boat’s route through their markings (character-
ized by coverage < 33% and score > 400), denoting them
”operators” onward. We keep referring to all non-operators
human-sensors as ”sensors”. While we do not expect any
correlation between score and coverage within the opera-
tors group, we do expect that correlation within the sensors
group to substantially improve upon excluding the operators.
Indeed once excluding operators, the correlation is r = 0.59
(compared to 0.25, when taking all subjects).7

Performance Prediction with Operators Distinction
The distinction between operators and sensors carries much
potential to improve the poor results obtained by prediction
models constructed based on the entire population. If we
can effectively predict the score for individuals from each
group and have the ability to classify subjects to the differ-
ent groups in runtime, then overall performance can be sub-
stantially improved by dropping those with low predicted
performance early in the session. Therefore we now turn to
show that based on a short initial interval of operation we
can: (a) effectively distinguish operators from sensors; (b)
predict the score for sensors; and (c) predict the score for
operators.

Distinguishing between Sensors and Operators. As es-
tablished above, the primary measures of differentiating sen-
sors from operators are the coverage and score. Unfortu-
nately, these measures can not be computed by the system in

7We do not expect this correlation to be close to 1, because,
as explained above, even in this group some of the subjects apply
some human intelligence when prioritizing the birds to be marked,
given that they do not have the capacity to mark all of them. This is
evidenced by the fact that some of them managed to perform close
to 100% marking with virtual sensor even though their coverage is
lower than 100%.

real-time as we do not have the total number of birds avail-
able at any given time, nor their locations. Our classifica-
tion model thus relies on the measurable behavioral features
mentioned earlier in this section, in particular on the num-
ber of clicks (both markings and unmarkings), the number of
marking cancellations, and the number of seconds the boat
was idle (i.e., having no bird markings to plan over). We
use the same ML methods as above (excluding Linear Re-
gression which is irrelevant for our classification task), once
again randomly dividing the 74 sessions to a training set and
a test set, in a ratio 70%-30%, repeating the process 1000
times and averaging the resulting R2 value. Table 3 provides
the average accuracy percentage (i.e., the percentage of ac-
curate classifications for sensors of the test set).

Model First Interval All Intervals
Random Forest 81.67% 86.1%

AdaBoost 67.6% 81.8%
SGD 72.76% 74.3%

Table 3: Average accuracy percentage of separation between
sensors and operators

The second column provides the results obtained when re-
lying solely on the first two minutes of each session, and
the third column is for the prediction achieved with the in-
put augmentation method, as used above. We observe that
the classification accuracy achieved with all three methods
is quite high, especially when using the augmented input.
Meaning that upon the recruitment of a new sensor, we can
reliably classify her (with 86% accuracy) as an operator or
sensor based on her first two minutes of operation.

Predicting Sensors Performance. Non-operator sensors’
performance prediction can be based on the behavior ob-
served during the same two-minutes interval used for the
classification. We experimented with the same four predic-
tion models as above, using the same methodology for ran-
domly dividing sessions into a training set and a test set
repeating the process 1000 times. This time, the behav-
ioral features found to be most effective for prediction were
the number of clicks overall (markings and unmarkings),
number of marking cancellations, total idle time, the aver-
age number of markings present throughout the session and
the average distance between marking and the boat. Table
4 provides the R2 values obtained with the two highest-
performing prediction models:

Model First Interval All Intervals
Random Forest 0.41 0.58

AdaBoost -0.116 0.2707

Table 4: Results of the highest performing models, for pre-
dicting sensor’s score

The third column in the table presents the results obtained
with input augmentation as before. The results reflect a rela-
tively high prediction accuracy with Random Forest, in par-
ticular with input augmentation (an increase to 0.58, from
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0.1 9 with a model trained over all sensors, i.e., without
excluding operators). Interestingly, the increase in perfor-
mance occurs despite the decrease in the training set size,
as upon excluding operators we are left with a substantially
smaller population of sensors.

Predicting Operators Performance. Predicting the per-
formance of human-sensors classified as operators is way
more challenging than predicting the performance of ”reg-
ular” sensors. This is simply because, as discussed above,
there is no correlation between score and coverage within
the operators group. Still, we manage to develop a predic-
tion model based on the number of clicks (markings and un-
markings) and the number of marker cancellations over the
first two minutes of operation that yield a R2 value of 0.19
with Linear Regression, as detailed in Table 5, reporting the
results of the two highest-performing methods:

Model First Interval All Intervals
Linear Regression 0.19 0.13

Random Forest 0.07 0.1

Table 5: Results of the highest performing models, for pre-
dicting operator’s score

This is the same level of accuracy obtained when predict-
ing based on the general population, as reported above. Still,
given the limitations of prediction for this population as dis-
cussed above, and the decrease in the test set size, as we rely
only on operators, this result is quite satisfying.

Prediction-Based Sensor Switching
We turn to illustrate the benefit of using the above classifica-
tion and prediction models for dynamic sensor assignment.
For this, we consider a setting where the boat is operated
continuously for a very long time. Sensors can be recruited
for 15 minutes, yet can be replaced at any time. Therefore,
we continuously iterate over the 74 sensors used in our ex-
periments, and determine for each, after two minutes of op-
eration, whether to keep her for an additional 13 minutes
or replace her with the next sensor in line (whose identity
and performance are unknown). The decision-making rule
associated with replacing a sensor is based on a performance
threshold r. Meaning that we replace the sensor only if her
predicted performance is lower than r. To make the most use
of the 74 sensors’ data, we train the classification and pre-
diction models used with each sensor from scratch, based on
the data of the 73 other sensors.

Figure 5 depicts the average score per 15 minutes ob-
tained in the above sensor dynamic assignment setting, as
a function of the threshold r used (horizontal axis).8 Each
curve corresponds to a different approach used: (a) ”no
switching” - having all 74 sensors perform without switch-
ing (i.e., performance is the average of individual scores);
(b) ”unified population” - when score prediction models are

8The calculation averages all actual scores of the 74 sensors, ei-
ther per two minutes or 15 minutes of operation, based on whether
replaced or not, weighted accordingly.

based on all other 73 sensors; (c) ”operator/sensor distinc-
tion” - when score prediction is based on preliminary classi-
fication as operator or a sensor, applying the relevant predic-
tion model according to the classification; and (d) ”perfect
prediction” - knowing the real score of that sensor. As ex-
pected, the general behavior of all prediction-based curves
suggests an increase as the threshold used increases. From
some point, however, performance decreases with the in-
crease in the threshold used. This happens for two reasons.
First, while only those sensors with a (predicted) perfor-
mance greater than r are used for full 15 minutes, each
worker replaced contributes her own two-minutes score to
the general score. As r increases, more workers are being
replaced, and the relative weight of their two-minutes score
contribution in the overall score becomes more substantial.
Second, since prediction is not perfect, for high r values the
relative weight of the 15-minutes score contribution of sen-
sors identified as highly-performing while their real score is
actually poor becomes more substantial.

The ”perfect prediction” and ”no switching” curves con-
vey the range of improvement any prediction method can
potentially achieve. With no prediction, the average score is
465 whereas perfect prediction obtains 511. When the pre-
diction is based on the entire sensors population, the max-
imum score achieved is 478. Meaning that we manage to
overcome 28% of the gap between no prediction and per-
fect prediction. With our proposed design that employs pre-
diction based on sensor/operator classification, we manage
to achieve a score of 496, i.e, overcoming 67% of the gap.
Though despite the fact that each of the individual prediction
models for the two populations is trained over a substantially
smaller training set, the results obtained are more than twice
as good.

Figure 5: Average 15-minutes score in the sensor dynamic
assignment setting, using the different prediction methods,
as a function of the threshold r used.

Discussion and Conclusions
The encouraging results reported in the former section sug-
gest that the prediction of crowdworkers’ performance when
acting as a human-sensor for a robot in search and rescue-
like settings can be substantially improved by applying a
preliminary classification of workers and developing a sep-
arate prediction model for each class. Failing to do so, re-
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sults in poor performance as the unified prediction model is
strongly affected by those who attempt to influence the route
planning process through selective reporting. The ability to
effectively predict a human-sensor performance has many
applications, among which the dynamic assignment (and re-
placement) of workers throughout the task, as demonstrated
above. Predicting operators’ performance is highly challeng-
ing, as their performance derives from the quality of the in-
ternal planning they apply, rather than the amount of event-
related information they provide. Indeed, for those acting as
classic sensors a way more accurate prediction was derived.
Still, it is with this population that accurate prediction ac-
counts most—any future improvement in the route-planning
module will increase the average score of workers from this
population, whereas will not affect the score of operators (as
the robot’s route-planning becomes simple given the small
number of events they report at any time). Meaning that with
a highly effective route planning module, the optimal assign-
ment procedure would be to replace all those classified as
operators along with those classified as sensors with poor
score prediction.

The question of why some workers act as operators rather
than sensors is intriguing. Alongside the behavioral expla-
nation provided in this paper, we note secondary reasons
such as misunderstanding the instructions (despite succeed-
ing in the qualification quiz in the experiments and the
pre-experiment simulation). Other reasons include our non-
optimal route planning algorithm that might have pushed
participants to think they can perform better by affecting
navigation, and the rewarding mechanism that was based
solely on score rather than (at least partially on) the ability to
follow task instructions. Another conceptual question raised
is the realism of using crowdworkers for high-risk search
and rescue missions, in the terms of the responsibility for
the consequences of non-optimal operation by crowdwork-
ers for many reasons.

One limitation of our work is that the experiments were
conducted using only one set of parameters. Experimenting
with additional scenarios and possibly extending the number
of subjects in each experiment will extend the applicability
and the ability to generalize to other domains, most impor-
tantly perhaps is the search-and-rescue field. An additional
direction for future work is the design of designated inter-
faces for those classified as operators. Meaning that upon
identification as an operator, the worker will be requested
to actually operate the boat rather than keep providing in-
formation about events. This may improve the score of that
population.
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