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Abstract

This paper proposes a heuristic algorithm for effectively sum-
marizing the work of novice robot operators, e.g., ones re-
cruited through crowdsourcing platforms, in search and rescue-
like tasks. Such summaries can be used for many purposes,
perhaps most notably for monitoring and evaluating an opera-
tor’s performance in settings where information gaps preclude
automatic evaluation. The underlying idea of our method is
dividing the task timeline into intervals, and extracting a sub-
set of high-scoring and low-scoring segments within, using
a heuristic scoring function. This results in a short effective
summary of the operator’s work, based on which several other
crowdworkers can evaluate her performance. The effective-
ness of the proposed method was extensively evaluated and
compared to a large set of alternative methods through a series
of experiments in Amazon Mechanical Turk. The analysis
of the results reveals that the proposed method outperforms
all tested alternatives. Finally, we evaluate the performance
one may achieve with the use of machine learning for predict-
ing the operator’s performance in our domain. While this ap-
proach manages to reach a performance level similar to the one
achieved with summaries, it requires an order-of-magnitude
greater effort for training (measured in terms of crowdworkers
time).

Introduction
With recent advances in robotics, the interest in human-
operator interfaces for robotic-based missions (Polin et al.
2016), primarily for exploration and search missions (Wang
et al. 2009c; 2011; Lewis, Sycara, and Nourbakhsh 2019) has
grown significantly. In this kind of missions—such as Urban
Search and Rescue (USAR) (Nourbakhsh et al. 2005) or plan-
etary exploration (Jakuba et al. 2018)—robots are used to re-
motely carry out various tasks which heavily rely on the abil-
ity to effectively navigate in the plain or space. In some com-
plex environments, however, their sophisticated logic, compu-
tational skills, and advanced sensors are still insufficient for
fully understanding event happenings. Here, the assistance
of human operators who can interpret visual and other sen-
sory data and improve, or at times fully take control over the
robot’s navigation, becomes invaluable (Wang et al. 2009c;
Machlev and Sarne 2020).
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Much research has focused on improving the operator’s
control, suggesting various synchronous and asynchronous
interfaces for operating the robots and managing the task
(Wang et al. 2011; Kosti, Sarne, and Kaminka 2014). Still,
not all human operators possess the same level of expertise,
and the effectiveness of their navigation can highly vary
(McGinn, Sena, and Kelly 2017). Therefore the ability to
evaluate operators’ performance in retrospect is crucial.

Evaluating the performance of an operator becomes even
more acute when the operator is a novice or a crowdworker.
Various real-life tasks involving robot-operation can nowa-
days be handled by untrained operators, on an ad-hoc basis.
This is often the case whenever the robot navigation is quite
intuitive and the main challenge lies in identifying events that
call for its operation, a task which is complex for the robot
yet quite easy for a person. For example, consider the case
of operating an autonomous drone to identify the black box
of an airplane that crashed. The drone’s image processing
capabilities are often insufficient for effectively identifying
items in the clutter and a human operator (even a novice
one) would be more capable guiding the drone’s search, pro-
vided a proper interface. The use of crowdworkers in that
sense is highly advantageous due to their high availability
and relatively cheap cost (compared to a trained operator).

Alongside the many advantages of using crowdworkers
for robot navigation, one needs to take into account several
disadvantages that hinder their performance: lack of expe-
rience, as well as failure to understand the task, setting or
goals may result in ineffective (and sometimes damaging)
operation. Also, in the absence of proper monitoring, workers
may be tempted to work on other tasks in parallel, to increase
revenues, becoming less attentive overall (Yin, Chen, and
Sun 2014). Being able to evaluate the operator’s performance
can thus be useful for various purposes, e.g., rewarding those
that did very well, or preventing those that perform poorly
from taking part in the task in the future.

The operator evaluation problem becomes highly challeng-
ing, both with expert operators and with novices or crowd-
workers, whenever performance cannot be directly measured
by the system, e.g., when it is fully subjective, or when infor-
mation gaps preclude an objective evaluation. For example
in USAR applications, the system may realize whether there
was a survivor at a certain location to which an operator navi-
gated a robot. However, it cannot tell, even in retrospect, if
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there were any other survivors missed by the operator (as
otherwise, if having such abilities, the system could have
effectively navigated the robot by itself and spare the hu-
man operator). In such cases, operators can be evaluated
only based on the opinion of an external expert that monitors
the process (either in real-time or offline). Such a process is
highly resource consuming.

In this paper, we propose the use of short summaries of
robot-operated sessions as a means for facilitating offline op-
erator’s evaluation. Given a trace (e.g., a video or a schematic
re-run) of the robot-operation session, our algorithm gen-
erates a sequence of sub-segments of that trace, aiming to
effectively capture the highlights of the session. The main
challenge in producing such a summary is overcoming the
lack of information related to the continuous changes taking
place in the environment (and hence any measure of success
in carrying out the task). The algorithm can rely only on the
operation of the robot. The summary can then be shown to
experts for evaluation, or to crowdworkers, taking advantage
of ’the wisdom of the crowd’, requiring a reduced amount of
work either way (compared to watching the full trace).

We evaluate the effectiveness of using the summaries gen-
erated with our proposed method through a set of compre-
hensive experiments using Amazon Mechanical Turk (AMT),
based on an infrastructure that emulates the application of
robotic boats for deterring birds in fish ponds. The achieved
performance is compared to several alternative evaluation
methods, including evaluation based on the complete traces,
evaluation based on watching the trace of events in increased
speed (fast-forwarding), and evaluation based on summaries
combined of random segments. The results analysis reveals
that, overall, our summary outperforms all other methods
tested in terms of the accuracy of the evaluation obtained and
the amount of effort required.

Finally, we report the results of our efforts aiming to de-
velop machine-learning based models for evaluating the per-
formance of a human operator in the above described set-
tings. This attempt turned successful in the sense that we
managed to converge to a similar level of evaluation accu-
racy as with summarization. However, the training of the
methods required an order of magnitude greater effort in
terms of the amount of data that had to be collected for train-
ing (measured in operators’ minutes). Interestingly, we find
that the two methods can co-exist and be used together as
a means for providing an even better assessment of opera-
tor performance—in our experiments this latter approached
resulted in an 11% improvement in the accuracy of the valua-
tions generated.

Related Work
The research described in this paper relates primarily to three
research areas: human-robot interaction, primarily in aspects
of control by non-experts and effective collaboration, crowd-
sourcing, in particular emphasizing crowdworkers’ attentive-
ness and collective evaluation, and strategy summarization.

Robot Control. Various mechanisms have been suggested
for enhancing robot control, in particular robot navigation

(Wang et al. 2009c; Velagapudi et al. 2008; Wang et al. 2011).
While most work considered and experimented with expert
operators, some work explicitly addressed the problem of
operating a robot by novices. For example, Bruemmer et
al (Bruemmer et al. 2004) develop a robot control system
for a mixed-initiative setting, providing substantial experi-
mental evidence for the success of a very broad spectrum of
novice users to operate the robot in an urban search and res-
cue scenario. McGinn et al (McGinn, Sena, and Kelly 2017)
investigate the performance and control behavior of novice
robot operators in a home environment. They find a substan-
tial variance in performance, indicating a wide spectrum of
abilities among novice operators.

Crowdsourcing. Our use of crowdworkers is twofold—
both for robot operation and for operator evaluation. Crowd-
sourcing for robot navigation, or more broadly, robotics and
web-based robotics, is not a new idea (Toris, Kent, and Cher-
nova 2014). For example, Crick et al (2011) present an online
interface that can be used by crowdworkers to navigate a
mobile robot through a maze, focusing on the effectiveness
of different types of image data streams for teleoperating
and training the robot, when provided to operators. Schulz
et al (2000) study the use of web interfaces to remotely oper-
ate mobile robots in public places, enabling remote users to
interact with humans within the robots’ environment. They
present much evidence for the effectiveness of such interfaces
for web-based monitoring and control.

The use of crowdworkers for operators evaluation re-
lates to an extensive literature on using crowdsourcing for
generating some ’collective wisdom’ (Gao and Zhou 2013;
Wang et al. 2012). One factor that may highly influence the
quality of evaluations to be received in our case is the rela-
tively long and tiring nature of the task. There is much for
workers’ attention degradation with time in monotonous tasks
(Rahman 2012), often leading to losing interest and switch-
ing to other tasks back and forth (Elmalech et al. 2016).
Prior work has suggested various remedies for this prob-
lem, such as designated monetary compensation mechanisms
(Mason and Watts 2010; DiPalantino and Vojnovic 2009;
Finnerty et al. 2013), breaking a long task to a series of
smaller sub-tasks to diversify the work or to avoid fatigue or
boredom (Yin, Chen, and Sun 2014) and introducing dummy
events to improve crowdworkers’ attention (Elmalech et al.
2016).

Strategy Summarization. While to the best of our knowl-
edge there is no work on human operator’s task performance
summarization, there is a broader literature relating to ex-
plaining robot behavior, interpretable machine learning, as
well as studies concerned with users’ mental models of sys-
tems that are relevant (Amir, Doshi-Velez, and Sarne 2019).
For example, in the context of human-robot interaction, sev-
eral methods have been suggested for supporting users in de-
bugging a robot or improving the ability of the human and the
robot to collaborate effectively (Nikolaidis and Shah 2013;
Lomas et al. 2012; Brooks et al. 2010). In particular, Hayes
& Shah (2017) proposed several methods for explaining
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robot policies to people using past execution traces, enabling
users to query the agent’s behavior in different states and
request explanations. These approaches are complementary
to ours, in the sense that they provide different ways of ex-
amining the behaviors of agents, yet they do not attempt to
generate summaries of the agent’s behavior. Several prior
works suggested methods for explaining recommendations
given by MDP-based intelligent assistants (Dodson, Mat-
tei, and Goldsmith 2011; Elizalde 2008). Yet, these aim
to explain a specific action taken (or a suggested action)
rather than reason about the task as a whole. Similarly, the
many approaches that have been recently proposed for devel-
oping interpretable machine learning models (Doshi-Velez
and Kim 2017; Vellido, Martı́n-Guerrero, and Lisboa 2012;
Ribeiro, Singh, and Guestrin 2016) typically seek to explain
a decision made by a machine learning model rather than
provide a description of a strategy or behavior of an agent in
different situations.

Model
We use a common robot-operation model, of wide use in
prior work on search and rescue (Wang et al. 2009b; 2009a).
It considers settings where a robot needs to be continuously
navigated by its operator for handling events. Each event is
characterized by an arrival time (at which it becomes active
and visible), location in the plane and the amount of time
it remains active. An event is considered ’handled’ if the
robot reaches its location while it is still active. The robot’s
operator is a priori unaware of the total number of events to
appear, their locations and the times they will appear in, as
well as the time window they will remain active. The operator
will be able to identify an event and its location only at the
time it appears.

The robot’s navigation is carried out simply by having the
operator draw routes that the robot will follow. The model
assumes the robot’s speed is constant, and at times where
there is no active drawn route, the robot stops in place (idle).
At any time the operator can change or even fully override
the currently active route, e.g., in response to changes in
the environment. The goal of the operator is to navigate the
robot, based on the information being unfolded along with
the session, such that the overall number of events eventually
handled is maximized.

Once the session is finished, the effectiveness of the robot-
navigation needs to be evaluated. Since the only reliable
information available to the system is the routes generated
along with the session, the evaluation needs to be carried out
by a human evaluator/s. On top of the routes information, the
latter can also extract the information about events, including
their appearance time and location (e.g., by watching the
video stream of events, similar to the way the operator made
use of this knowledge for navigating the robot). Each evalua-
tor will watch the session as a whole (or selected parts, i.e., a
summary) and assign a score. The success of the evaluation
will then be measured based on the correlation between the
score assigned by the evaluator (or the average score in case
of several evaluators) and the number of events handled in
the session.

Figure 1: The summary extraction process.

Proposed Method
The summarization process relies on dividing the session into
fixed intervals and intelligently selecting a short continuous
trace-portion (a ’segment’) from each interval (see Figure 1
for illustration). The underlying idea is that the performance
of the operator may substantially vary along time, hence for
completeness, it is important to consider segments that span
the entire session. The segment picked from each interval
is either the one we believe to reflect the best or the worst
performance of the operator in that interval.

In order to decide which segment to choose from each
fixed interval along the timeline, we use Algorithm 1. The
algorithm takes as an input the parameters T and S. The first
is the robot’s trace along time, decoded as a set of tuples
storing for each time point the robot’s location in the plane
and its current active route. The second is the length of the
summary to be produced. In addition, the interval takes as
an input the parameter N , denoting the length of any atomic
continuous segment to be presented, such that it will provide
enough context to evaluate performance at a given time.

For exposition purposes we divide Algorithm 1 into three
conceptual stages: extracting attributes of the different time
points, calculating a performance-related score to each point
based on the extracted attributes and finally selecting a point
(and its corresponding segment) from each interval based on
the calculated scores.

Extracting Point Attributes. For each point p ∈ T , we
calculate the following measures (Step 3): (a) idle time - time
elapsed without having an active route; (b) time from last
decision - time elapsed since the most recent update or gener-
ation of a route; (c) time till next decision - from current time
till next update or generation of a route; (d) existence of active
route (binary) - whether there is currently an active route; (e)
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Algorithm 1: Summarization algorithm
input: T - robot’s trace along time; N - segment’s length;
S - summary length;
output: summarized - the summarized timeline;

1 scoredT imeline = []; summarized = [];
2 for p ∈ T do
3 p = ExtractAttributes(p);
4 scoredT imeline.push(Evaluate(p));
5 end
6 for each I ⊂ scoredT imeline of size |T | · N

S
do

7 if Rand() < pselect then
8 p = Lowest scored point in I;
9 end

10 else
11 p = Highest scored point in I;
12 end
13 summarized.push(N

2
points before p);

14 summarized.push(N
2

points from p and on);
15 end
16 return summarized;

route to be interrupted (binary) - whether the current route
will be updated before completed; (f) route is an update (bi-
nary) - whether the current route resulted from an update to
an existing route. These will be used for extracting perfor-
mance score and are stored in the array scoredT imeline.
The above set of attributes attempts to provide a mixture of
measures for the attentiveness of the operator (e.g., idle time
and the existence of an active route) and measures for the
operator’s reaction to the continuous changes in the environ-
ment the robot is operating in (e.g., time till next decision
and route to be interrupted).

Evaluation Phase. Next, we assign a score to each point
based on its attributes (Step 4). The score aims to capture
the suitability and effectiveness of the user’s actions (or lack
of) at that specific time. The greater the score, the more
likely it is that the operator is inattentive to happenings or
made poor choices around that time, and vice versa. The
score calculation is done through the heuristic function Eval-
uate(point) as given in Algorithm 2. It is essentially weighing
the different attributes specified above according to their na-
ture - for measurable attributes power coefficients are used
(αidle,αelapsed,αremaining), whereas for binary attributes ad-
ditive coefficients are used (αpath,αpre change,αpost change).

Selection Phase. Finally, we select points of interest. As
explained above, the selection methodology relies on divid-
ing the timeline into fixed-length intervals and selecting a
segment from each. Since the segment size is N and the to-
tal summary is of length S, the number of segments to be
presented is S

N . The interval length is therefore |T | · N
S . The

algorithm iterates over the intervals of such size spanning T
(Step 6). For each such interval it chooses whether to pick
the point of maximum or minimum score (using the pre-

Algorithm 2: Evaluating user performance in a given
point along timeline.

input: p ∈ T - robot location
output: score - the score assigned to point p

1 function Evaluate(p):
2 score = (p.idleT ime)αidle +

(p.timeFromLastDecision)αelapsed +
(p.timeT illNextDecision)αremaining ;

3 if no active route then
4 score = score ∗ αpath;
5 end
6 if current route is eventually interrupted then
7 score = score ∗ αpre change;
8 end
9 else if current route overrides a previous one then

10 score = score ∗ αpost change;
11 end
12 return score;
13 end

specified probability pselect, see Step 7)1 and then takes all
points within a segment of size N spanning that point (Steps
13-14). The output is a summary of length S, containing
different continuous segments of points.

Experimental Infrastructure
For evaluating our operator’s automatic summarization
method we used an experimental framework simulating boats’
navigation in fish ponds. The framework was developed as
part of a larger multi-institute collaboration aiming to de-
velop innovative capabilities for autonomous systems de-
signed to deter massive fish-eating birds from the depredation
of fish ponds. The system is based on a small robotic boat,
guided through location (GPS-based), computer-vision and
human (crowd-sourcing-based) sensors. When birds land on
the pond, they are scared away by a boat heading to their
direction as quickly as possible, thus limiting the damage.

The performance of vision processing algorithms is highly
affected by the water movement in the background in this do-
main, hence the automatic discovery of birds and automatic
navigation of the boat is commonly poor. A human opera-
tor, on the other hand, even a novice one, can handle boat
operation quite easily, as all that is required is identifying
the birds upon arrival and pointing the boat in their direction.
Therefore boat navigation is planned to be carried out using
either expert operators or crowdworkers, based on schematic
pond maps and the transfer of cameras output (installed on
poles around the fish ponds).

We used a web-based simulated version of the above sys-
tem, which was primarily developed for experimentation.2
The interface provided to the operator enables clicking on a
location in the pond area to initiates a straight-line route from
the current boat’s position or clicking on the boat to convey a

1Several other selection criteria can be applied. For example,
choosing according to the average score of adjacent points.

2The testbed was developed using IIS for the server-side and
Angular framework (HTML, CSS, Typescript) for the client-side.
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route by drawing it (freestyle). With both methods the current
route can be disrupted at any time and change immediately
takes effect. New birds appear in the pond according to a
pre-defined scenario which specifies their arrival time, spe-
cific location at the fish pond, and the time they will leave
by themselves if not deterred by the boat by then. Birds are
deterred whenever the boat gets near them. The deterrence
distance is pre-set by the system administrator. To emphasize
this capability the boat is enclosed with a circle representing
its deterrence radius and once a bird is within the circle, it
will be deterred immediately (indicated by the change of its
color to red) and will not be presented anymore. The goal of
the boat operator is to navigate the boat in a way that deters
as many birds as possible within the time allotted for the
session.

The birds’ deterrence testbed is a good representation of
our problem domain: it contains a dynamic environment
where new events of a spatial nature (represented by the
birds that arrive and leave) need to be handled by a human-
operated robot (the robotic boat), where operators are com-
monly novices and employed on an ad-hoc basis. Further-
more, evaluating an operator requires knowledge of the envi-
ronment which is very difficult to extract (birds locations and
timings) and the system can only rely on the robot’s location
along time for this task and traces of the generated routes.

For evaluating the performance of individual operators
based on their recorded sessions of operating the boat, we
developed a complementary GUI. With this GUI we could
load a session and present it to a user (i.e., a crowdworker
evaluator) either as is or only selected parts of it. The GUI
enabled asking the evaluator at any preferred time to pro-
vide a numerical evaluation for the current (or overall so far)
effectiveness of the robot navigation. For supporting the ex-
perimental design we also enabled controlling the speed of
playing the session (or parts).

Experimental Design
Our experiments were based on twenty-minute of boat-
operating sessions. The fish farming pond’s shape was ar-
bitrarily set to be a circle of 427 pixels radius. Birds’ appear-
ance events were randomly set for each session (both arrival
time and location). Each arriving bird left after 10 seconds,
unless deterred within that time.

The robotic boat’s speed was set to 1
5 pixel per millisecond

and the deterrence radius was set to 25 pixels. The total
amount of birds was set to 930. This amount, which is greater
than the overall deterrence capacity, guaranteed that not even
the best operator would be able to deter all birds, based on
the boat’s speed and pond’s size, hence the operator’s quality
becomes an issue.

We generated 68 different scenarios of the above type. The
reason for generating that many scenarios is that we wanted to
enable a comparison to machine-learning based methods, as
we explain later on, hence we needed enough data for training.
Operators were recruited and interacted through AMT. Each
participant received thorough instructions on how to operate
the boat, the game rules and her goal in the game, followed
by a short qualification quiz. Compensation included a small
show-up fee and a bonus which linearly depended on the

number of deterred birds. Each operator was assigned one
of the 68 scenarios described above (with no repetitions), so
we ended up with 68 recorded game sessions for which we
had every operation taken by the operator recorded. Out of
the 68 sessions we picked eight that were used as the set of
sessions requiring operator evaluation. The selection of the
eight sessions was carried out such that the set will provide as
much variance as possible in terms of the real score achieved,
the average idle time and average navigation route length
- which are considered measures with some correlation to
operator’s performance. The number of birds deterred in
these sessions varied between 403-671.

For each of the eight twenty-minute sessions we produced
a four-minute summary, using Algorithm 1 with parameters:
N = 6 seconds (based on a small scale experiment test-
ing with N ∈ [2, 4, 6, 8, 10], choosing the value resulting
in the best correlation between evaluated score and actual
score), pselect = 0.5 (to obtain a balanced mixture of oper-
ations), αidle = αelapsed = αremaining = 2, αpath = 1.5,
αpre change = 1.1 and αpost change = 0.9. We note that
while the above parameter choices do not result in a fully
tuned summary, the idea is to provide a proof of concept for
the effectiveness of the proposed method, rather than to find
the optimal configuration. Consequently, we did not check
additional configurations, as even with these parameters the
method was found to perform better than all other methods
we compare to. Still, a close examination of the scores as-
signed to each of the 1200 seconds of each of the eight test
cases, aligning them with the events that took place along
the session, reveals that these are indeed good indicators for
performance.

For each of the eight sessions that needed to be evaluated,
we recruited evaluators (using, once again, AMT) that pro-
vided a score for the effectiveness of the operation. Evaluators
received a thorough explanation regarding the task and had to
pass a short qualification quiz. The evaluators were explicitly
asked to evaluate the quality of the operator’s work, knowing
that it is measured by the number of deterred birds out of the
total. Our compensation scheme suggested a small payment
for participation and a $2 bonus for providing detailed an-
swers. This choice aligns well with results reported in prior
research favoring performance-based payments (PBPs) over
fixed hourly rate (Gneezy and Rustichini 2000) as long as the
bonus was sufficiently high (Gneezy and Rustichini 2000),
and in particular in evaluation tasks (Harris 2011).

Overall, we had 600 evaluators in our experiments. To
avoid a carry-over effect, each evaluator was assigned one
session only out of the eight, and experienced one of the
following tested treatments:
• Full Session (single score) - watching the full session and

providing a single score at the end (10 participants for each
of the eight sessions, 80 participants overall).

• Full Session (interval scores) - watching the full session
and pausing every two minutes throughout to provide a
score for that two minutes period. Also, at the end of
the session a single score for the complete session was
requested (10 participants for each of the eight sessions,
80 participants overall).

• Fast Forward (X2 and X5) - watching the full session

106



in a fast forward mode, i.e., presenting the changes in
the environment at an increased pace, providing a single
score at the end. Here we experimented with replaying the
session in an X2 (twice-faster) speed and an X5 (five times
faster) speed, resulting in sessions of ten-minute and four-
minute length, respectively (10 participants for each of the
eight sessions and each of the two speeds, 160 participants
overall).

• Random Summary - watching a four-minute summary of
the session composed of random six-second segments from
each interval (as opposed to the selection based on Al-
gorithm 1) and providing a single score at the end (10
participants for each of the eight sessions, 80 participants
overall).

• Heuristic Summary - watching the four-minute summary
we created for the session, as specified above, and provid-
ing a single score at the end (25 participants for each of
the eight sessions, 200 participants overall).

In all the above treatments, the numeric score provided was
discrete, between 1-10, where 1 is the worst possible per-
formance, and 10 is the best.3 Also, in all treatments, in
addition to the numerical evaluation, subjects were requested
to provide a textual evaluation justifying their score.

Overall, the set of methods we compare to enables both
reasoning about the performance that can be achieved by pro-
viding evaluators the complete trace (as is, in segments and
at a greater pace) and when providing them only a random
subset of the trace. This enables a better understanding of the
influence different aspects of our proposed heuristic summary
method have on the achieved performance (e.g, the shortened
trace presented, the scoring function affecting the selection
of segments to present).

Results
We randomly draw a single evaluation out of those it received
for each of the eight sessions, and calculated the correlation
between the set of evaluations (on a scale of 1-10) and the
actual number of birds deterred in each. This process was
repeated 1000 times. Table 1 depicts the average correlation
(over those calculated in each of the 1000 draws) in all five
treatments.

Full
Single/Interval

Fast
Fwd X2/X5 Rand Heuristic

0.09 / 0.28 0.15 / -0.02 0.13 0.35

Table 1: Average correlation between evaluators’ scores and
actual performance.

From the table, we observe that while our heuristic sum-
mary method uses less or the same amount of evaluator’s
time, compared to the other methods, it produces more accu-
rate evaluations. Still, the correlation it obtains is somewhat
modest. One possible solution for improving evaluation accu-
racy, which applies to all tested methods, is averaging several

3This scale was set arbitrarily and any other set could be used,
as we are only interested in the correlation between the evaluation
score and the actual number of birds deterred.

Figure 2: Average correlation between evaluations and actual
performance using the eight test case sessions, as a function
of the amount of time invested by the evaluators (minutes).

evaluations of different evaluators when evaluating a given
session. Therefore in the following paragraphs, we focus our
analysis on this approach, emphasizing the tradeoff between
the overall evaluators’ time spent in the evaluation and the
performance (in terms of average correlation) obtained.

Figure 2 depicts the average correlation between evalua-
tors’ average scores and actual performance for the eight ses-
sions used, in all five treatments, as a function of the overall
amount of human labor invested (horizontal axis, measured
in minutes). Note that data points of different methods that
correspond to the same amount of invested effort may be
based on a different number of valuations for each session
(hence the difference in points’ granularity and the extent of
the different curves). For example, the investment of twenty
minutes is equivalent to a single valuation in Full Session,
two valuations in Fast Forward X2, and five valuations in
Fast Forward X5, Heuristic Summary and Random Summary.
For each amount of operators’ time on the horizontal axis, we
calculated the corresponding number of evaluators needed
with each method and randomly draw that many valuations
(with no repetitions) for each of the different sessions. Then,
calculated the average valuation for each session and conse-
quently the correlation with actual performance. This was
repeated 1000 times, hence each data point represents the
average correlation of the 1000 draws. Overall, we observe
from Figure 2 that the heuristic summary method dominates
all other tested methods by far. It provides a substantially
greater correlation to the actual score, for any amount of in-
vested human effort. In the following paragraphs, we provide
some additional important insights revealed from the results
summarized in Figure 2.

Full Session. The results of the Full Session based on in-
terval scores treatment are presented in the graph using two
variants. The first is the correlation with the average overall
score received at the end of the session and the second with
the average of scores received in the two-minute intervals.
Surprisingly, the performance with all three variants tested is
quite poor, and even when using 10 evaluators for evaluating
each session (equivalent to 200 minutes) the best of the three
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achieved a 0.53 correlation between prediction and actual
score. This level of performance can be achieved using a
random summary with a fifth of the effort (40 compared to
200 minutes). These results are particularly disappointing be-
cause when watching the complete session the evaluator can
potentially count the number of birds deterred and provide
an exact answer, i.e., reaching a correlation of 1 even with a
single evaluator.

Interestingly, the two variants in which the evaluators were
requested to provide an evaluation every two minutes resulted
in 2 to 3 times better performance compared to the variant
where evaluators had to watch the complete session before
providing their valuation. One possible explanation for this
is that it is somehow difficult for people to recall and equally
address in terms of the weights assigned to all the events
that took place throughout the session. It is also possible
that evaluators found the task of focusing on the boat’s route
for twenty minutes to be somewhat boring, and some of
them did not pay attention, at times, to the happenings on the
screen. Shortening the evaluation session enables overcoming
these problems as the evaluation is made with all events
still fresh in one’s memory. This can explain the dominance
of averaging the scores given to two-minute intervals over
getting one overall score after watching the twenty-minute
footage. However, our results suggest that an even better
performance is obtained if the two-minute valuations results
received are discarded, relying only on the additional global
score provided. Apparently, requesting the two-minute scores
helps in getting the worker’s attention to events throughout
the session and in ’summarizing’ some of the intervals in a
structured manner (i.e., through the scores assigned).

Fast Forward. The performance of the Fast Forward treat-
ment seems to be highly influenced by the speeding factor.
Indeed, with this mechanism, the evaluator still gets to see
the entire sequence of events, and apparently, with rather a
moderate speeding (X2), she does not lose much compared
to watching at a normal speed, as performance is better than
with Full Session with a single score. Still, performance falls
short compared to the two variants of the Full Session with
interval scores. This can either be explained by the fact that
much like with Full session based on a single score the evalu-
ators may be bored and somehow inattentive when having to
watch a long session, or by some additional cognitive load
incurred from having to watch events in a pace quicker than
their actual happening. To test the first explanation some
additional experimentation is required, asking evaluators to
provide sub-scores every minute when watching the session
in X2 speed. However, for the second explanation, we can
find strong support in the results of the X5 treatment. Here we
observe a reverse correlation which increases as the number
of evaluations received increases. Meaning that evaluators
could not map good performance to high score whatsoever.

Random Summary. This method is found to be second
only to our proposed heuristic summary approach. The per-
formance it converges to is the same as the best of the Full
Session methods converges to, except that it reaches this level

of performance with fifth(!) of the evaluators’ time invest-
ment. Meaning that the summary by itself is instrumental in
achieving an effective score, possibly by keeping the evalua-
tors focused and preventing loss of important insights. Even
though missing a large portion of the happenings, the result
seems to capture a somewhat effective sample of the oper-
ator’s attitude towards the task and representatively reflect
her performance. Still, for any amount of evaluators’ time
invested, the average scoring received with our heuristic sum-
mary method is better correlated with actual performance,
compared to the use of Random Summary. In fact, our method
converges to a 50% greater average correlation (0.75 com-
pared to 0.51). This suggests that our selection of events of
interest to be included in the summary is highly effective
and accounts, in large, to the high quality of the summary
produced. This can also be learned from the textual feed-
back received from Turkers, e.g., random summary reported
that it was hard to evaluate the boat operator ’at times it did
seem like some important parts were missing’ (in the random
summary) vs. ’I thought it was adequate to provide enough
context for the operator’s actions and not be overly long’ (in
the heuristic summary).

Heuristic Summary. As already mentioned above, we ob-
serve from Figure 2 that the heuristic summary dominates all
other tested methods, for any amount of invested operators
effort, by far. Furthermore, the variance in the correlations
obtained when using our method is significantly smaller than
with the other methods. This latter attribute is of great im-
portance due to the consequences of a wrong valuation (e.g.,
continue hiring a wrong operator or terminating the work of
a good one).

ML-Based Prediction
Our heuristic summary approach for solving the operator
evaluation problem can be considered as behavioral-based—
it relies on analyzing operator’s actions according to some
behavioral model (i.e., based on behavioral features) for gen-
erating a summary that can then be used for enhancing the
collective wisdom of crowdworkers in producing a proper
evaluation. One alternative approach for solving the prob-
lem would be the use of machine learning for constructing
a prediction model that could predict scores based on those
behavioral features.

Machine Learning algorithms were developed for formal
domains, which are materially different from social domains
(Shmueli 2017; Yahav, Shehory, and Schwartz 2018). Still,
recent research has found much merit in integrating data sci-
ence and social science, in the context of predicting human
choice behavior (Plonsky et al. 2017). Therefore, we took a
similar approach and used several standard machine learn-
ing techniques (K-Nearest Neighbors, Neural Network and
Random Forest) for predicting the operator’s effectiveness
based on observed behavioral features. The method found
to perform best is Random Forest (RF) hence we focus our
analysis on its results. Random Forest is an ensemble (or set)
of classification or regression trees. Each tree in the ensemble
is built based on the principle of recursive partitioning, where
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Figure 3: Average correlation when using Random Forest
prediction and our Heuristic Summary, as a function of the
training set size (or its equivalent crowdworker time).

the feature space is recursively split into regions containing
observations with similar response values.

Our implementation used the ’scikit-learn’ Python module
(Pedregosa et al. 2011) with 100 trees. The best predicting
features were found to be the overall boat idle time and the
average route length the boat traveled within the session.
These, together with the number of birds deterred out of
the total amount introduced within the sessions, were used
as an input for the learned model. For the training set, we
used 60 full-lengths (twenty-minute) sessions. For the test
set, we used the eight sessions that were used for testing the
alternative methods as described above.

Figure 3 depicts the average correlation between actual and
predicted performance using Random Forest, as a function
of the training set size. The procedure used for calculating
each point is similar to the one used in Figure 2 - for each
training set size we randomly sampled that amount of ses-
sions out of the 60 available and used those for training the
model. Then, we used the model for predicting performance
in each of the eight sessions of the test set, and calculated
the correlation with the actual number of deterred birds. This
was repeated 1000 times for each training set size, hence
each point in the graph is the average of 1000 calculated
correlations. The figure also includes a curve depicting the
performance achieved with the heuristic summary for the
equivalent amount of crowdworkers’ time (i.e., each twenty-
minute operator’s session is equivalent to five four-minute-
based evaluations). From the Figure we observe that the use
of 60 sessions is sufficient for performance to converge, reach-
ing a correlation of 0.75. This level of performance is similar
to what we manage to achieve with our behavioral-based
summarization approach. Still, with the proposed heuristic
summary, we reached this level of performance with 80 min-
utes of evaluators’ time. With Random Forest we had to learn
from 60 sessions, which are equivalent to 1200 operators-
minutes (15 times more!).

We emphasize that despite the similar results obtained, the
two approaches are completely different and associated with
different kinds of advantages and disadvantages. For example,
with the ML-method training data needs to be collected only
once, whereas in our method evaluators need to be employed

separately for each session. On the other hand, our method
results can improve if using better evaluators (which is irrele-
vant when relying on ML). Better evaluators can be identified
based on repeated interaction, comparing valuations and ac-
tual performance, in retrospect or by checking how close
one’s valuations are to the consensus (e.g., to the average
of valuations received from others). Moreover, we note that
the summary generated with our method is self-contained,
meaning that it can be used for various other purposes, e.g.,
for training the operators themselves or prospective operators
through examples.

Finally, we note that since the ML-based prediction and the
proposed heuristic summary method are so different in their
essence, they can be used together as a means for providing
an even better prediction. In our domain, taking the average
of the score predictions produced by the two methods for
each tested setting we end up with a correlation of 0.83 with
the actual number of deterred birds, compared to 0.75 with
each of the methods separately.

Conclusions
The encouraging results reported in the former sections sug-
gest that indeed the heuristic summary method is a highly
effective alternative to evaluations produced based on watch-
ing full sessions, fast-forwarding the session or observing
random pieces from the session. With the summaries gen-
erated, one can achieve the same quality of evaluation (as
with the other methods) with a substantially fewer evaluators’
effort, or a substantially more accurate evaluation for a simi-
lar effort. The comparison to random summaries may seem
somewhat naive, and indeed that choice was made merely
due to lack of any proven segment selection heuristic in prior
work. Still, we emphasize that the results indicate that the
random selection achieves better correlation than all other
non-summary-based methods tested, hence its importance.

One apparent dominating behavioral factor influencing
a segment’s score in the decision whether to include it in
the summary is the worker’s activity level. While this may
seem more adequate to scenarios where events are frequent,
we note that by properly setting the weight assigned to idle
events or the length of the summary to be produced (and
consequently the length of the intervals considered), one can
capture sufficient activity even when events are infrequent.

While ML-based methods are found to produce similar
evaluation accuracy, the heuristic summary method requires
substantially less human effort to deliver. Indeed with the
ML-based algorithms, this effort is a one-time investment.
Still, there are several other advantages in favor of the heuris-
tic summary as discussed in the former section. In particular,
as we demonstrate, the two methods can co-exist and com-
plement each other, yielding an even better prediction.

We emphasize that the results obtained with the heuristic
summary as reported in this paper, are actually lower bounds
for the performance one may achieve if using it fully tuned,
in terms of the different parameters used. In particular, we
hypothesize that by further increasing the portion of high-
score events (at the expense of low-score events) better results
may be obtained as people are known to be more critical of
mistakes than successes.
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We see many directions for future research emerging from
this paper, out of which we detail three. First, as mentioned
above, much work is still needed for finding good ways for
tuning the proposed method to perform optimally in different
application domains. Second, we believe the summary gen-
eration can benefit from dynamic segment length selection,
adjusting the number of seconds to show before and after
an event to its nature. This, however, would require further
optimization as the number of ’events’ to show will now need
to depend on the nature of events picked. Finally, we see a
great potential in using machine-learning-based methods for
predicting the most informative segment within each interval,
as an alternative for our behavioral-based scoring function.
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