
Proceedings of the Eighth AAAI Conference on Human Computation and Crowdsourcing (HCOMP-20)

Batch Prioritization of Data Labeling Tasks for Training Classifiers

Masanari Kimura,1 Kei Wakabayashi, Atsuyuki Morishima2

1 2University of Tsukuba
1-2, Kasuga, Tsukuba, Ibaraki, Japan

1mkimura@klis.tsukuba.ac.jp 2{kwakaba, mori}@slis.tsukuba.ac.jp

Abstract

In a data labeling process for building machine learning, the
choice of labeling data instances is known to have a signifi-
cant impact on the performance of classifiers. So far, the study
of active learning has addressed the issue of how to choose the
subset by prioritizing the data instances based on the state of
the current classifier. However, the active learning approach
has two drawbacks that (i) require a training loop to update
the priorities of labeling tasks and (ii) require us to choose
a specific active learner while we do not know the optimal
classification model. In this paper, we propose a new frame-
work of priority-aware labeling system that allows a parallel
task assignment to crowd workers without assuming a partic-
ular classifier, which is based on novel methods called “batch
prioritization” and “label expansion”. We conducted experi-
ments with multiple datasets to examine the effectiveness of
the approach and found that the proposed method improves
the performance of the final classifiers more quickly than the
active learning approach despite that the labeling tasks can be
processed in a fully parallel manner.

Introduction

Data labeling is a fundamental process for building machine
learning (ML) models. From the view of human computa-
tion systems (e.g., crowdsourcing), data labeling is a pro-
cess that takes a set of data instances and produces the cor-
responding labels. Since this process requires human com-
putations of which cost is not negligible, a label requester
usually has to pick out a subset of data instances from a large
data pool to put the request into a labeling system. To choose
the subset, the requester needs to prioritize data instances for
maximizing utility for the subsequent ML training. How-
ever, the prioritization to obtain a better training dataset is
unclear in general (Lin et al. 2019).

So far, this issue has been addressed in the study of active
learning (Yan et al. 2011; Yang et al. 2019). Typical active
learning algorithms examine the data pool and choose data
instances that are considered to be the most informative for
updating model parameters of a ML model (Settles 2010). In
fact, active learning considerably improves the performance

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of ML models when the budget available for labeling is lim-
ited. Figure 1 (top) shows the framework of active learning
based labeling system. In this work, we suggest that the ac-
tive learning approach has two fundamental problems.
(i) Active learning requires a repetitive update of the prior-

ities, which restricts the parallelization of labeling work
by the crowd. Moreover, in practice, we need a labeling
platform (e.g., crowdsourcing service) that supports a
dynamic control of the order of task display, which also
brings a complexity of implementation.

(ii) Active learning requires us to choose a specific active
learner at a moment we do not necessarily know what
is the optimal ML model for the dataset. In fact, as we
confirm later, the performance improvement is affected
when we use an active learner that is different from the
final ML model. We call this issue a model mismatch
effect.

In this paper, we propose a new labeling framework that al-
lows a parallel task assignment to crowd workers, which is
effective for training classifiers without assuming a particu-
lar ML model. The proposed method comes with two key
novel concepts; batch prioritization and label expansion,
which addresses the issues (i) and (ii) respectively. Figure 1
(bottom) illustrates the entire proposed framework.

The batch prioritization, which addresses the issue (i), in-
dicates a function that determines the priorities of the la-
beling tasks before the process starts based on an unsuper-
vised analysis of the data pool. We present a batch prioritiza-
tion algorithm that is based on a graph-based classification
method. The proposed method analyzes the k-nearest neigh-
bor graph of the instances in the data pool and determine the
priorities of labeling tasks in an unsupervised manner.

However, the batch prioritization assigns priorities to op-
timize the performance of the graph-based classifier, which
is not necessarily good for the final ML model (Baldridge
and Osborne 2004). The model mismatch issue becomes a
critical problem in this situation because there is a large gap
between the criteria of unsupervised and supervised classi-
fiers. For this reason, we claim that the model mismatch is-
sue should be addressed jointly with the batch prioritization.

To this end, we integrate the label expansion function,
which addresses the issue (ii), into the proposed labeling

163

���������	
��

����
��
���
�

���������������

��������

���
�
� ����

��������

��������������
�

��������	
���

��������������������������	��

�
 !
�����
������"
��

#
$��������

���
�
� ����

%!��!�

���������
���&���������

���������	
��

����&$���
�
���
�

����������	��&

�������������

���
�
� ���

�������������

������
�
���
�
� ���

��������

�����������������������

	��&
������"
��

����&$���
�
���
�

��������

��������������
�

���
�
���������

����
���
���&�
�������

Figure 1: (top) A typical framework of labeling system
based on an active learning loop. (bottom) The proposed la-
beling system based on batch prioritization that allows sys-
tem to assign tasks to humans in a fully parallel manner.

framework to suppress the model mismatch effect. The label
expansion is based on a co-training that trains two different
ML models to help each other (Zhou, Zhan, and Yang 2007).
In the proposed framework, the graph-based classifier be-
haves as a co-trainer that expands the labels given by human
workers to help the final ML model. Since the graph-based
classifier is what the batch prioritization assumes, there is no
model mismatch at least in the label expansion phase.

The contribution of this paper is summarized as follows:
(a) We present the concept of batch prioritization for data
labeling tasks and propose a graph-based algorithm that de-
termines the priorities in an unsupervised manner. (b) We
point out the model mismatch issue in a priority-aware label-
ing framework. We propose a label expansion method that
mitigates the model mismatch issue as a function on label-
ing systems. (c) We provide experimental results on multiple
domains and show that the proposed framework produces a
dataset that yields higher performance of the final classifier
compared to the active learning approach despite that the la-
beling tasks can be processed in a fully parallel manner.

Graph-Based Batch Prioritization

Problem Statement

In this paper, we consider classification tasks where we
have a set of data instances X = {xi}Ni=1 to be classi-
fied (data pool). We denote the label of data instance xi by

Algorithm 1 Batch prioritization by coverage maximization
Require: G = (X,E), Covering function f , Budget J

1: H ← φ, h(x)← −∞ for all x ∈ X
2: for j = J to 1 do
3: x← arg max

x
f(H ∪ {x}) (x ∈ X\H)

4: H ← H ∪ x
5: h(x)← j
6: end for
7: return h

ψ(xi) ∈ Y ∪ φ where Y is a set of the possible classes. We
use the symbol φ to represent where no label is assigned,
i.e., ψ(xi) = φ indicates xi has not been labeled yet. When
the labeling process starts, ψ(xi) = φ for all xi ∈ X .

There are one or more human workers (annotators) who
classify the data instances correctly1. A labeling task or sim-
ply task refers to a request to the human workers for labeling
a specific data instance. Let J be a budget that indicates the
maximum number of tasks we are allowed to request. Since
we assume J � N , we need to make a priority of each
data instance h(xi). A higher h(xi) value indicates a higher
priority. The human workers put the correct labels to data
instances according to the order specified by the priorities.
After the workers classify J data instances, classifiers are
trained by using them as training data. We call these classi-
fiers final classifiers, which are not assumed to be a specific
ML model. We assume a performance measure of the final
classifiers such as accuracy of a set of unseen data instances.

(Batch Prioritization Problem) Given a set of data in-
stances X and a budget J , batch prioritization is the prob-
lem to make a priority function h such that maximizes the
performance of final classifiers that are trained by using the
labels produced by the labeling process. We emphasize the
difference against the active learning problem that (i) up-
dates the priorities repeatedly during the labeling process
and (ii) aims at improving a single specific classifier.

Batch Prioritization as Coverage Maximization

In this section, we present the proposed batch prioritization
method based on an unsupervised analysis of data distribu-
tion. The principle of the method is the maximization of cov-
erage on the data pool, which is a notion that measures the
representativeness of the selected set of data instances.

We define a function α : X → 2X that maps a data in-
stance x ∈ X to a set of data instances that are represented
by x (the concrete definitions are presented later). Roughly
speaking, we call x represent x′ if the label of x′ can be
confidently estimated by knowing the label of x. On the
basis of the definition of α, we define a coverage function
f : 2X → N as f(H) =

∣∣⋃
x∈H α(x)

∣∣. The proposed batch
prioritization method attempts to select J data instances that
maximize the coverage f(H) where H ⊂ X is the selected
data instances that will have the top priorities. Algorithm 1

1In practice, human workers are not perfect. The effect of hu-
man errors can be mitigated by applying a quality management
method based on redundant labeling (Yan et al. 2011).

164

��� � �����

�����

Figure 2: K-nearest neighbor graph (k=2) and strongly con-
nected components (SCC) in the graph.

shows the procedure of the batch prioritization algorithm
based on the greedy submodular optimization. The simple
greedy method guarantees a 1 − 1/e ≈ 0.63 approximate
solution and the actual result is likely to be much better than
this (Nemhauser, Wolsey, and Fisher 1978).

In the following subsections, we present two definition of
α(x) to implement this strategy. Both definitions are based
on a k-nearest neighbor similarity graph of the data pool.

k-Nearest Neighbor Similarity Graph

Let X be the domain of data instances (xi ∈ X). We assume
that a similarity function sim : X 2 → [0, 1] can be defined
on X . For instance, we can use the set of d-dimensional vec-
tor Rd as X and the cosine similarity as sim.

Given X , sim, and k ≥ 1, we construct k-nearest neigh-
bor similarity graph G = (X,E). G is a weighted directed
graph that is defined by the set of nodes corresponding to the
data instancesX , the set of edgesE. Let Nk(xi) ⊂ X\{xi}
be the set of the k most similar data of xi with respect to the
similarity function sim. The set of edges is defined as;

E = {(u, v)|u ∈ X, v ∈ Nk(u)}. (1)

Coverage Based on Strongly Connected Component
The first way to define α(x) is based on strongly connected
component (SCC) decomposition. The main idea of this def-
inition is that, if we know the label of x, the label of the
data instances in the SCC that contains x is likely to have
the same label (Figure 2). An algorithm of Kosaraju (Sharir
1981) is known as an efficient SCC decomposition algo-
rithm on a directed graph, which has a time complexity of
O(E+V). When we denote the set of nodes in the SCC con-
taining x by SCC(x), the definition of the coverage func-
tion is fSCC(H) =

∣∣⋃
x∈H SCC(x)

∣∣. The maximization of
fSCC(H) regardingH is easily computed: First, we sort the
obtained SCCs in order of the size and take the top J SCCs.
Then, we randomly choose a node from each SCC.

Coverage Based on Simple Cycles Enumeration The
definition based on SCC decomposition can be ineffective
when there are very large SCCs because we assume that only
one node covers the whole component. We propose another
definition involving enumeration of simple cycles, which is
a cycle that does not intersect with itself. Jonson’s algo-
rithm (Johnson 1975) is a well-known enumeration algo-
rithm for simple cycles on a directed graph with a time com-
plexityO((V +E)(C+1)) whereC is the number of simple
cycles on the graph. When we denote the set of nodes in the

simple cycles starting from node v by cyc(v), we can define
the coverage function as fcycle(H) =

∣∣⋃
v∈H cyc(v)

∣∣.
Minimizing Model Mismatch Effect Using

Co-Training Framework
As Figure 1 (bottom) shows, the proposed framework
adopts a label expansion process to mitigate the model mis-
matching effect. Label expansion refers to a process that as-
signs labels to a subset of data instances. The label expan-
sion process put a label to a data instance if the label can be
confidently estimated from labels assigned by human work-
ers. Otherwise, the process should leave the instance unla-
beled. The label expander is supposed to follow the same
principle as the batch prioritization, i.e., the proximity on
the k-nearest neighbor similarity graph. We propose a graph-
based label expansion method called RD-Walks expander.

Given the set of data instances X = {xi}Ni=1 and the map
ψ where ψ(xi) ∈ Y∪{φ} that maps xi to the label that is an-
notated by human worker, the RD-Walks expander generates
the expanded label map ψ̃ where also ψ̃(xi) ∈ Y ∪ {φ}. In
the proposed framework, we provide the expanded labeled
dataset {(x, ψ̃(x))|x ∈ X} for training final classifiers. In
terms of the k-nearest neighbor graph, the set of nodes X
contains both of the labeled and unlabeled data instances,
which are denoted by L = {xi ∈ X|ψ(xi) ∈ Y} and U =
{xi ∈ X|ψ(xi) = φ}, respectively. We also denote the set
of nodes that have the label y by Ly = {xi ∈ L|ψ(xi) = y}.
D-Walks Classifier

The RD-Walks expander is derived from a similar idea of
discriminative random walks (D-Walks) classifier, which is a
graph-based semi-supervised classification algorithm (Cal-
lut et al. 2008). The D-Walks classifier estimates the label of
unlabeled node v ∈ U based on betweenness in the graph.

For each class y, D-Walks Dy is defined as a set of walks
such that start from a node in Ly and end with a node in
Ly . We assign the probability p(d) of a walk d ∈ Dy as
the probability of a random walk (Z1, . . . , Zn), which is
calculated as the product of transition probabilities in the
walk. For the k-nearest neighbor similarity graph, we de-
fine the transition probability as the normalized similarities
P [Zt+1 = u|Zt = v] = sim(v,u)∑

v′∈X sim(v,v′) . Let nd(v) be the
number of times that a node v is visited in a walk d. By using
these notions, we can define the betweennessB(v, y) of v on
class y as the expected value of nd(v) w.r.t. p(d|d ∈ Dy).
The D-Walks classifier classifies the unlabeled node v ∈ U
into the class φ̂(v) = arg max

y
B(v, y).

RD-Walks Expander

The D-Walks classifier attempt to classify all the data in-
stances discriminatively. Unlike the D-Walks classifier, the
RD-Walks expander assigns a label to a data instance only
when the instance is close enough to labeled instances.

We impose two transition restrictions on the D-Walks not
to go out to an uncertain region. First, the RD-Walks Ry is
not allowed to visit any other labeled node.
Ry = {(v1, . . . , vn)|v1, vn ∈ Ly, vt ∈ U, 1 < t < n}.

165

Figure 3: Property of RD-Walks. (left) Walk 2 → 3 → 4
succeeds because the start node and the end node have the
same label A. (right) Walk 2→ 3→ 5 fails because the walk
reaches the node having a different label to the start node.

Second, the walks should satisfy that the sum of the dis-
tance is lower than the maximum distance parameter p and
the length is at most q. We use Wvu = 1 − sim(v, u) as
the distance from v to u. Therefore, the RD-Walks expander
considers the subset of Ry denoted by Ry

≤q,p as follows:

Ry
≤q,p={(v1, . . . , vn) ∈ Ry |n ≤ q,

n−1∑

t=1

Wvtvt+1 ≤ p}.

To enumerate all the walks inRy
≤q,p, we execute the depth

first search that starts from each labeled node v ∈ L. Fig-
ure 3 shows examples of the search of RD-Walks. In the
successful random walk, the start node and the end node are
in the same class, whereas the failed random walk reaches
the node of the different label. The betweenness of node v
on class y for RD-Walks expander is defined as follows:

B′
q,p(v, y) = E[nd(v)1R

y
≤q,p

(d)] =
∑

d∈R
y
≤q,p

p(d)nd(v) (2)

Because of the restriction imposed on the RD-Walks,
there will be a substantial number of the unlabeled nodes
that are visited by no RD-Walk. By definition, the between-
ness B′

q,p(v, y) for such node v becomes zero for all class y.
The expanded label is assigned to nodes that are visited by
at least one RD-Walk, formally as follows:

ψ̃(v) =

{
φ (maxy∈Y B′

q,p(v, y) = 0)

arg max
y∈Y

B′
q,p(v, y) (otherwise) (3)

If ψ̃(v) = φ, i.e., the node v is not passed through by any
RD-Walk, v remains at the unlabeled node. We denote the
set of expanded labeled instances by L̃ = {x|ψ̃(x) �= φ}.
We can increase the amount of the expanded labeled in-
stances by performing the RD-Walks expansion multiple
times. Therefore, the number of iterations M is also the
parameter of the method. Let L̃(m) be the set of expanded
labeled instances obtained by the m-th execution of the
RD-Walks expansion. The (m+ 1)-th RD-Walks expansion
is performed as if L̃(m) is the set of annotated instances.
As M increases, the number of instances to be labeled in-
creases, but the accuracy of assigned labels may decrease.
Algorithm 2 shows the procedure of RD-Walks expansion.
RD-Walks(G, L̃, q, p) is a function that carries out the
depth first search and returns Ry

≤q,p for all y.

Algorithm 2 RD-Walks Expansion
Require: graph G = (X, E, W), annotated label map ψ,

number of iteration M, max step q, max length p
1: L̃(0) = {x|ψ(x) �= φ}
2: for m = 1 to |M | do

3: R≤q,p = RD-Walks(G, L̃(m−1), q, p)

4: for u ∈ X\L̃ do
5: Compute B′

q,p(u, y) by Eq. (2) for each y ∈ Y
6: Compute ψ̃(u) by Eq. (3)
7: end for
8: L̃(m) = {x|ψ̃(x) �= φ}
9: end for

10: return ψ̃

Experiments

Settings

We benchmark our model on three datasets of a UCI
Machine-Learning Repository2, Letter, Mice Protein, and
Digits. The domains of the data instances are d-dimensional
vector Rd, and we adopt the cosine similarity as the simi-
larity function sim. The number of data instances |X|, the
number of classes |Y|, and the dimension of the feature vec-
tor d of each dataset is: (20,000, 26, 16) in Letter, (1,080, 8,
77) in Mice Protein, and (5,620, 10, 64) in Digits. We use
70% of the dataset as the data pool and 30% for the test data.
The performance of the final classifiers is measured by the
classification accuracy on the test data.

Methods

We compare multiple combinations of prioritization meth-
ods, label expansion, and final classifiers. For prioritization,
we choose J data instances from the data pool by using
one of the following prioritization algorithms and receive
the true labels of them: (Random) J data instances are cho-
sen randomly. (LC (MLP)*) Active learning based on least
confident using multi-layer perceptron as the active learner.
(LC (LR)*) Active learning based on least confident using
logistic regression as the active learner. (Cycle) Batch pri-
oritization using the covering function fcycle. (SCC) Batch
prioritization using the covering function fSCC . The active
learning methods (marked as *) update the priorities for each
time we obtain a new label. Although active learning does
not meet the requirement of the batch prioritization scenario,
we measured the performance for the comparison purpose.

For label expansion, we compared two options: (None)
The obtained label is provided to final classifiers as it is.
(RDWalks) RD-Walks expander is applied to provide the
expanded labels ψ̃ to final classifiers.

Finally, we train one of the following final classifier:
(MLP) Multi-layer perceptron. (LR) Logistic regression.

We compare the combination of these options. For exam-
ple, we denote by “SCC + RDWalks + MLP” the method
that uses SCC as the prioritization method, RD-Walks as the
label expansion, and MLP as the final classifier. Note that

2http://archive.ics.uci.edu/ml/index.php

166

Table 1: Test accuracy of the final classifiers when the budget
J = 100. The labels of the methods denote (prioritization
method) + (label expansion method) + (final classifier).

Mice Protein Digits Letter
Random + None + MLP 0.6532 0.8722 0.3002
Random + None + LR 0.6430 0.8704 0.2980
LC (MLP) + None + MLP 0.7566 0.9409 0.2778
LC (LR) + None + LR 0.7222 0.9216 0.3184
LC (LR) + None + MLP 0.7179 0.9365 0.2420
LC (MLP) + None + LR 0.7152 0.9155 0.4009
Random + RDWalks + MLP 0.8081 0.9004 0.4303
Random + RDWalks + LR 0.7832 0.9011 0.4378
LC (MLP) + RDWalks + MLP 0.8111 0.9653 0.3243
LC (LR) + RDWalks + MLP 0.8068 0.9524 0.2507
SCC + RDWalks + MLP 0. 9318 0.9662 0.6411
Cycle + RDWalks + MLP 0.9204 0.9568 0.5829
SCC + None + MLP 0.9284 0.8385 0.4663
Cycle + None + MLP 0.9208 0.8088 0.4881

“LC(MLP) + None + LR” and “LC(LR) + None + MLP”
are model mismatch situation that uses inconsistent pair of
active learner and final classifier. The parameters of the pro-
posed method is set as k = 3, p = 0.5, q = 5, and M = 5.

Results

Table 1 shows the test accuracy of the final classifiers when
the budget is J = 100. The result shows that the methods
using proposed batch prioritization (SCC and Cycle) tend to
achieve better performance compared with the active learn-
ing methods despite that the prioritization does not need to
be updated. The performance of the active learning methods
is surprisingly lower than the batch prioritization, particu-
larly on the Letter and Mice Protein dataset, even though
they update the priorities dynamically. This can be attributed
to the fact that active learning relies on the output of the cur-
rent classifier that can be poor performance when the amount
of training instances is insufficient. The batch prioritization
is rather stable when the budget is not sufficiently large.

Regarding the model mismatching effect, in active learn-
ing methods, we confirmed that the performance decreases
when the models of the active learner and the final classi-
fier are different (i.e., the models are mismatched) in most
cases (only exception is “LC(MLP) + None + LR” against
“LC(LR) + None + LR” in Letter dataset). The model mis-
matching effect is observed also in the batch prioritization
methods. In the Digits dataset, the performance of “SCC +
None + MLP” and “Cycle + None + MLP” is worse than
methods with other prioritization methods. This result im-
plies the methods suffer the model mismatch effect since the
principles of the graph-based prioritization model and the
algebraic classifiers are considerably different. However, the
batch prioritization methods gain a significant performance
improvement by applying the RD-Walks expander (“SCC +
RDWalks + MLP” and “Cycle + RDWalks + MLP”), so that
the proposed methods overtake the active learning methods.
The RD-Walks expander improves the performance in any
case, but it is especially effective for the methods with the
batch prioritization. This result implies the RD-Walks suc-
cessfully mitigate the model mismatch effect caused by the
proposed batch prioritization.

Conclusion

In this paper, we proposed a new framework of priority-
aware labeling system that allows a parallel task assignment
to crowd workers, which does not assume a particular clas-
sifier. The proposed method is also practical because it can
be applied just as a preprocessing and postprocessing of or-
dinary crowdsourced labeling tasks. Additionally, the pro-
posed method is robust against unknown final classifiers by
addressing the model mismatch effect. This property is ad-
vantageous when we collaborate with many different ML
models (Kobayashi, Wakabayashi, and Morishima 2020).

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 19K20333, 16H02904 and JST CREST Grant Number
JPMJCR16E3 including AIP challenge program.

References

Baldridge, J., and Osborne, M. 2004. Active learning and
the total cost of annotation. In Proc. EMNLP, 9–16.
Callut, J.; Françoisse, K.; Saerens, M.; and Dupont, P.
2008. Semi-supervised classification from discriminative
random walks. Machine learning and knowledge discovery
in databases 162–177.
Johnson, D. B. 1975. Finding all the elementary circuits of
a directed graph. SIAM Journal on Computing 4(1):77–84.
Kobayashi, M.; Wakabayashi, K.; and Morishima, A. 2020.
Quality-aware dynamic task assignment in Human+AI
crowd. In Companion Proc. Web Conference, 118–119.
Lin, B. Y.; Lee, D.-H.; Xu, F. F.; Lan, O.; and Ren, X.
2019. AlpacaTag: An active learning-based crowd annota-
tion framework for sequence tagging. In Proc. ACL: System
Demonstrations, 58–63.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functions – i. Mathematical Programming 14:265–294.
Settles, B. 2010. Active learning literature survey. Technical
report, University of Wisconsin, Madison.
Sharir, M. 1981. A strong-connectivity algorithm and its ap-
plications in data flow analysis. Computers & Mathematics
with Applications 7(1):67–72.
Yan, Y.; Rosales, R.; Fung, G.; and Dy, J. G. 2011. Active
learning from crowds. In Proc. ICML, 1161–1168.
Yang, J.; Smirnova, A.; Yang, D.; Demartini, G.; Lu, Y.;
and Cudre-Mauroux, P. 2019. Scalpel-CD: Leveraging
crowdsourcing and deep probabilistic modeling for debug-
ging noisy training data. In Proc. WWW, 2158–2168.
Zhou, Z.-H.; Zhan, D.-C.; and Yang, Q. 2007. Semi-
supervised learning with very few labeled training examples.
In Proc. AAAI, 675–680.

167

