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Abstract

Explaining to users why automated systems make certain
mistakes is important and challenging. Researchers have pro-
posed ways to automatically produce interpretations for deep
neural network models. However, it is unclear how useful
these interpretations are in helping users figure out why they
are getting an error. If an interpretation effectively explains to
users how the underlying deep neural network model works,
people who were presented with the interpretation should be
better at predicting the model’s outputs than those who were
not. This paper presents an investigation on whether or not
showing machine-generated visual interpretations helps users
understand the incorrectly predicted labels produced by im-
age classifiers. We showed the images and the correct labels
to 150 online crowd workers and asked them to select the in-
correctly predicted labels with or without showing them the
machine-generated visual interpretations. The results demon-
strated that displaying the visual interpretations did not in-
crease, but rather decreased, the average guessing accuracy
by roughly 10%.

Introduction

Explaining to users why automated systems make certain
mistakes is important. As deep neural network technologies
achieve higher performance, they have been applied to im-
portant domains, influencing important decisions in health-
care, transportation, and education. However, due to the non-
linear, complicated structures of neural models, the high per-
formance of deep neural networks is achieved at the cost of
interpretability. In response, researchers have proposed ways
to explain the inner workings of deep neural networks by au-
tomatically producing interpretations (Melis and Jaakkola
2018; Selvaraju et al. 2017; Ribeiro, Singh, and Guestrin
2016). Such machine-generated interpretations help vari-
ous stakeholders (Strobelt et al. 2017): researchers, who
develop new deep-learning architectures; machine-learning
engineers, who train and optimize existing networks; prod-
uct engineers, who apply general-purpose pre-trained net-
works to various tasks; and the general users, who want to
understand system outputs (Chu, Roy, and Andreas 2020;
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Smith-Renner et al. 2020; Selvaraju et al. 2017). This pa-
per focuses on the end users – who may not understand
the mechanism of the underlying deep neural networks,
but are most influenced by their outputs – to investigate
whether machine-generated interpretations can help users
make sense of errors made by algorithms.

We use the image-classification task as our test bed. Neu-
ral image classifiers generate interpretations through two
approaches: designing proxies, which are inherently inter-
pretable (e.g., decision tree), to substitute the black-box
deep neural networks (Melis and Jaakkola 2018); or generat-
ing post-hoc interpretations outside the deep neural network
workflow (Selvaraju et al. 2017), which is where our work
will focus. Most post-hoc interpretations are in the form of
instance-wise interpretation – for example, saliency maps of
input images. A saliency map highlights the most informa-
tive region of the image with respect to its classification la-
bel, unveiling post-hoc evidence of the neural network pre-
diction. This line of work was in part motivated by the need
of “end users” (Du et al. 2018; Nourani et al. 2019), “non-
expert users” (Ribeiro, Singh, and Guestrin 2016), or “un-
trained users” (Selvaraju et al. 2017), and the generated in-
terpretations were often evaluated by how much they could
boost users’ trust of deep neural networks. However, it is
still unclear how useful these interpretations are in helping
users make sense of automated system errors.

The need for interpretability arises due to Incompleteness
in the problem formalization, making it difficult to make
further judgements or optimizations (Doshi-Velez and Kim
2017). When a user observed a few cases where the auto-
mated system incorrectly labeled his/her images, it was dif-
ficult for the user to decide what to do. Did the errors occur
because the system’s accuracy level is low? If so, should the
user switch to another system? Are the images too compli-
cated for computers, in which case users should not expect
reliable image labels? Did the underlying algorithms have
biases that worsened with certain types of images? We ar-
gue that errors expose existing incompleteness in the prob-
lem formalization, requiring users to seek interpretations.
Namely, an important use case of interpretations is to help
users figure out what is going on when they get certain er-
rors. Researchers have proposed evaluations to assess how
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Figure 1: The workflow of “Guessing the Incorrectly Predicted Label” task. Each worker is presented with an image and told that
the deep neural network incorrectly predicted its label (Step 1). The worker may also be presented with visual interpretations
(Step 2). The worker is then asked to guess the incorrectly predicted label (“Carousel” in this example) from five options, four
of them being distractors (Step 3). If an interpretation effectively explains how the underlying deep neural network model works
to users, the people who were presented with the interpretation should be better at predicting the model’s outputs.

much an interpretation reflects the model’s behavior (also
known as “fidelity”) (Melis and Jaakkola 2018) or boosts
users’ trust in automated systems (Selvaraju et al. 2017;
Ribeiro, Singh, and Guestrin 2016). However, it is unclear
how useful these interpretations are in helping users figure
out why they are getting an error.

This paper introduces a method that uses crowd workers
from Amazon Mechanical Turk (MTurk) to directly evalu-
ate the usefulness of interpretations in helping users to rea-
son about the errors of deep neural networks1. Figure 1
overviews the workflow. In this task, each worker is pre-
sented with an image and told that the deep neural net-
work incorrectly predicted its label. The worker may also be
presented with a set of interpretations (e.g., saliency maps)
that explain how the deep neural network “perceives” this
image and makes the final prediction. The worker is then
asked to guess the incorrectly predicted label from five
options, four of them being distractors. If an interpretation
effectively explains how the underlying deep neural network
model works to users, the people who were presented with
the interpretation should be better at predicting the model’s
outputs than those who were not.

This paper tried to answer two research questions: First
(RQ1), do machine-generated visual interpretations help hu-
man users better identify predicted labels? Second (RQ2),
when do (and when do not) the visual interpretations help?

Related Work

Interpretation Methods Our work focuses on post-hoc
interpretations. These methods generate saliency maps to in-
dicate where the neural networks “look” in the images for
their predictions’ evidence. Existing methods can be catego-
rized into four lines: Backprop-Based: computes the gradi-
ent (or variants) of the neural network output to score the im-
portance of each input pixel, such as SmoothGrad (Smilkov
et al. 2017); Representation-Based: uses the feature maps at
intermediate layer of neural networks to generate saliency

1The code and interface are available via GitHub:
https://github.com/huashen218/GuessWrongLabel

maps, like GradCAM (Selvaraju et al. 2017); Meta-Model-
Based: trains a meta-model to predict the saliency map
for any given input in a single feed-forward pass, such as
RTS (Dabkowski and Gal 2017); Perturbation-Based: finds
the saliency map by perturbing the input with minimum in-
tervention and observing the change in model prediction,
like ExtremalPerturb (Fong, Patrick, and Vedaldi 2019).

Evaluating Interpretations Evaluating the effectiveness
of interpretations is critical in practice. Existing evaluations
answer two questions: whether the interpretations genuinely
reflect neural network behavior (Adebayo et al. 2018), and
whether the interpretations are useful for users. To answer
the latter question, a set of metrics are proposed to involve
human evaluation. For instance, trust assessment and user
satisfaction is verified in Smith-Renner et al. (2020) by sur-
veying general users. Mental model evaluations designed
by Bucinca et al. (2020) and Chu, Roy, and Andreas (2020)
measure whether general users can understand and pre-
dict model outputs. Feng and Boyd-Graber (2019) creates a
human-computer cooperative task to measure how much in-
terpretation improves human performance. However, more
study is needed to investigate how general users perceive
and predict neural networks’ failure cases, which is of vital
importance in building trust and correcting model behavior.

Human-AI Collaboration Although human computation
has traditionally played a data annotation role in deep learn-
ing systems, there is increasing interest in incorporating it
into diverse stages of human-AI hybrid systems (Nourani et
al. 2019). Due to its goal of building human understanding
and trust in black-box neural networks, interpretation is in-
herently a human-centric problem. Related efforts involve
human perception of different types of interpretation repre-
sentations in visual interfaces (Roy et al. 2019), etc.

Method

We used a deep neural network to label images and em-
ployed several interpreters to generate visual interpretations
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for the images. We showed each image the deep neural net-
work had labeled incorrectly to a group of online crowd
workers and asked them to guess which images the deep
neural network had mistakenly labelled. Only the workers
in the control group were presented with the visual interpre-
tations. We detail the procedure of the study in this section.

Step 1: Labeling Images We trained an image classi-
fier on ImageNet dataset, with its TOP-1 accuracy reach-
ing 78.67% (Xie et al. 2019). We randomly selected images
whose labels were incorrectly identified by the classifier.

Step 2: Generating Instance-Wise Interpretations For
each image in the misclassified subset, we used three exist-
ing interpreters – i.e., input perturbation (Fong, Patrick, and
Vedaldi 2019), intermediate feature extraction (Selvaraju et
al. 2017), and output backpropagation (Smilkov et al. 2017)
– to explain three aspects of this image. Input perturba-
tion interpretation (column 2-4 in Figure 2) observes how
the output value changes as input is “deleted” in different
sub-regions. We used ExtremalPerturb, which aims to find
a small pixel subset that, when preserved, are sufficient to
keep model output stable. Moreover, ExtremalPerturb al-
lows researchers to explicitly constrain the percentage of
preserved pixels. We provided three levels of percentage:
a = {20%, 40%, and 50%}. Inter-Feature extraction in-
terpretation (column 5 in Figure 2) looks at intermediate
layers of the neural network to indicate the discriminative
image regions used by the model for prediction. We used
GradCAM, which extracts the gradient information flow-
ing into the last convolutional layers, to explain the impor-
tance of each pixel. Output backpropagation interpreta-
tion (column 6 in Figure 2) leverages backpropagation to
track information from the model’s output back to its in-
put to generate the saliency map. We used SmoothGrad,
which samples similar images by adding noise to the orig-
inal image and using the average of the resulting heatmaps
to obtain the final interpretation. We eventually generated (i)
three saliency maps from input perturbation view with 20%,
40% and 50% percentages respectively, (ii) one saliency
map from intermediate feature extraction view, and (iii) one
saliency map from the output backpropagation view.

Step 3: Having Crowd Workers Guess the Incorrectly
Predicted Label Next, we recruited crowd workers on
MTurk to complete tasks2. The workers were shown the im-
age and its correct label, and were informed that “a computer
algorithm misidentified this image as something else.” Only
the workers in the control group, as shown in Figure 1, were
presented with the visual interpretations. On the interface,
we explained that the visual interpretations are “visualiza-
tions that try to show how the algorithm sees this image,”

2Each Human Intelligence Task (HIT) contained one image,
and multiple workers were recruited to answer the question. The
price of a HIT is $0.05. Four built-in MTurk qualifications are used:
Locale (US Only), HIT Approval Rate (≥98%), Number of Ap-
proved HITs (≥3000), and the Adult Content Qualification.

Figure 2: Examples of five types of errors in image clas-
sification. The visual interpretations are generated by three
existing interpreters (see “Step 2” in the Method section.)

and provided comprehensive descriptions for each interpre-
tation. For example, we explained “input perturbation inter-
pretation” with a 20% mask (column 2 in Figure 2) as “We
only allow the algorithm to see 20% of the image and ask
the algorithm to choose which 20% is the most important re-
gion. The black mask blocks the regions the algorithm pays
less attention to.” The workers are then asked to guess the
incorrectly predicted label from five options. One of the
options was the incorrect label predicted by the deep neu-
ral network model, and the remaining four were randomly
selected from the whole label set of ImageNet (i.e., 1,000
labels), excluding the correct gold-standard label.

The assumption is that if the visual interpretations effec-
tively explain how the deep neural network works, the work-
ers who were presented with the interpretations should dis-
tinguish the predicted label better than those who were not.
Humans alone are sufficient to guess the correct label, but it
requires workers to take the mechanism of deep neural net-
works into account to guess the incorrect label predicted by
deep neural networks. MTurk workers are appropriate par-
ticipants because they represent general users who do not
necessarily understand deep neural network models nor are
trained for reasoning about these models’ errors.

Categorizing Error Cases Manually To inspect useful-
ness of interpretation in fine-grained model failure scenarios
(RQ2), the authors inspected 1,000 misclassified images and
categorized them into five types of errors (Figure 2), in part
based on the literature (Arjovsky et al. 2019).

1. Local Character Inference (C1): The model arrives at
wrong prediction by looking at only part of the object.
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For instance, in Figure 2(C1), the error might be due to
the model partially capturing the restaurant dome, which
looks similar to the canopy of a pulled rickshaw.

2. Multiple Objects Selection (C2): For images with mul-
tiple objects, the model makes a prediction by choos-
ing another object rather than the labeled one, as in Fig-
ure 2(C2).

3. Similar Appearance Inference (C3): The model mis-
classifies the object in the image into another class with a
similar appearance, as shown in Figure 2(C3).

4. Correlation Learning (C4): The model exploits corre-
lational relationships in training data to apply an incor-
rect label to the image. For example, in Figure 2(C4),
the model predicts a “shower curtain” by identifying the
bathroom context, even if no curtain is in the image.

5. Incorrect Gold-Standard Labels (C5): The true label
of the images might be incorrect in the ImageNet. Fig-
ure 2(C5) shows an example.

Experimental Results

Experiment 1: Testing Two Conditions in the Same
Batch of HITs Experiment 1 had two conditions: [Inter-
pretation] (i.e., [Int]) and [No-Interpretation] (i.e., [No-Int]).
The only difference is that HITs in the [No-Int] group do
not show the interpretations to workers in interfaces. We
evenly divided 200 randomly selected image samples into
two groups. We posted these 200 images in a same batch
of HITs at the same time on MTurk, where each HIT re-
cruits nine different workers. A total of 1,800 submissions
(900 submissions in each condition) were contributed by 41
workers in [Int] and 40 workers in [No-Int] conditions re-
spectively. We did not control the workers’ participation, so
a worker could participate in both groups. Thirty-six out of
45 workers participated in both conditions.

Surprisingly, in Experiment 1, showing the workers
machine-generated visual interpretations reduced their
average accuracy in guessing the incorrectly predicted
labels. We calculated the accuracy as the percentage of cor-
rectly inferring the classifier’s prediction among all 900 sub-
missions in each condition. The accuracy collected in [Int]
was 0.73, while the accuracy in [No-Int] was 0.81. The dif-
ference was statistically significant (unpaired t-test, p<0.05,
N=100). Based on the results, the machine-generated inter-
pretation did not help, but instead hurt, the workers’ ability
to guess the incorrectly predicted labels. The by-category
analysis (Table 1) shows that displaying interpretations sig-
nificantly lowers human accuracy in cases where the er-
rors were probably caused by similar appearances between
items (C3) or by mistakenly learning from the background
or scenes of the image (C4).

Experiment 2: Testing with Two None Overlapping Sets
of Workers Experiment 2 was controlled more strictly.
We randomly selected another 200 images (different from
those used in Experiment 1), and used the same photo in
both [Int] and [No-Int] conditions. We used custom MTurk

C1 C2 C3 C4 C5 Overall

Int 0.77 0.83 0.71 0.54 0.71 0.73
#images 29 23 28 15 5 100

No-Int 0.76 0.77 **0.87 **0.75 0.78 *0.81
#images 25 10 47 12 6 100

Table 1: Results of Experiment 1. Showing the workers
machine-generated visual interpretations reduced their av-
erage accuracy in guessing the incorrectly predicted labels.
(Unpaired t-test. *: p<0.05, **: p<0.01.)

C1 C2 C3 C4 C5 Overall

Int 0.57 0.74 0.66 0.41 0.67 0.63
No-Int 0.52 0.71 **0.84 *0.59 0.77 **0.73
#images 44 20 112 18 6 200

Table 2: Results of Experiment 2. The machine-generated
visual interpretation again reduced the average human ac-
curacy in inferring model misclassification. (Paired t-test. *:
p<0.05, **: p<0.01.)

qualifications to control the participants: workers who par-
ticipated in one condition could not accept HITs in the other
condition. We recruited 10 different workers for each im-
age, in which five workers were in the [Int] group and the
other five were in the [No-Int] group. A total of 2,000 sub-
missions (with 1,000 submissions in each condition) were
collected, contributed by 42 workers in the [Int] condition
and 63 workers in the [No-Int] condition respectively.

In Experiment 2, the machine-generated visual interpre-
tation again reduced the average human accuracy in in-
ferring model misclassification (Table 2.) The accuracy
of [Int] was 0.63, whereas accuracy in [No-Int] condition
was 0.73. The difference was again statistically significant
(paired t-test, p<0.01, N=200). On average, humans do not
benefit from interpretations when inferring incorrect predic-
tions in image classification tasks. Similarly to Experiment
1, the by-category analysis showed that displaying interpre-
tations significantly lowers human accuracy in C3 and C4
(Table 2) errors. We also noticed that the accuracy for C1
and C2 images increased in both experiments when show-
ing visual interpretations, although the differences were not
statistically significant.

Discussion

Our experiments showed that, in the case of image clas-
sification, machine-generated visual interpretations are not
necessarily useful in helping users understand deep neural
network failures. It could even be harmful, as in the cases
where the errors were probably caused by similar appear-
ances between items (C3) or by mistakenly learning from the
background or scenes of the images (C4). System designers
should use caution when displaying machine-generated in-
terpretations to users.
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Why It Did Not Help More research is required to dis-
cover why showing interpretations was ineffective. Here,
we submit several of our hypotheses with the goal of help-
ing future explorations. First, the interpreters are not good
enough to help humans. The representational power – in-
cluding the correctness, sensitivity, etc., of the interpreta-
tion model – might not be sufficient to augment human rea-
soning about errors. Although machine-generated interpre-
tations captured some of the deep neural network’s behav-
iors, it may not be good enough to help humans. Second,
the format is insufficient. The saliency maps may not be
the most efficient format to convey information to humans.
For example, when a saliency maps model changes an inner
parameter, this change might not be obvious enough to be
noticeable by humans, but could still affect the final predic-
tions. Third, the interpreters may work poorly in cases where
the image classifier failed.

Limitations We are aware that this work has several lim-
itations. First, the sample size was relatively small. Given
that classifiers incorrectly labelled more than 10,000 images
in the ImageNet validation set alone, 200 images are rel-
atively small portion of the data. Second, we only tested
three particular types of interpretations, and also presented
the interpretations together on the same page. This exper-
imental setup introduces the possibility of missing out on
the “best” interpretations, or different interpretations might
affect each other and reduce their effectiveness. Third, we
recruited MTurk workers with certain qualifications to sim-
ulate general users. It is difficult to eliminate data noise
stemmed from workers’ misunderstanding or incognizance
of images or options. Finally, we only tested visual inter-
pretations for image classifiers. It requires more research to
study if similar effects could be generalized to other tasks.

Conclusion

The goal of this study was to evaluate the usefulness of
machine-generated visual interpretations for general users’
reasoning about model errors. To this end, we utilized the
“guess incorrectly predicted labels” task to examine the use-
fulness of visual interpretations. Our two sets of control ex-
periments, with 3,800 submissions contributed by 150 on-
line crowd workers, suggest that showing the interpretations
does not increase, but rather decreases, the average accuracy
of human guesses by roughly 10%.
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