
A Fast Heuristic Search Algorithm for Finding the
Longest Common Subsequence of Multiple Strings

Qingguo Wang, Mian Pan, Yi Shang and Dmitry Korkin
Computer Science

University of Missouri
Columbia, Missouri 65211

{qwp4b, mpry6}@mail.missouri.edu, {shangy, korkin}@missouri.edu

Abstract

Finding the longest common subsequence (LCS) of multi-
ple strings is an NP-hard problem, with many applications
in the areas of bioinformatics and computational genomics.
Although significant efforts have been made to address the
problem and its special cases, the increasing complexity and
size of biological data require more efficient methods appli-
cable to an arbitrary number of strings. In this paper, a novel
search algorithm, MLCS-A*, is presented for the general case
of multiple LCS (or MLCS) problems. MLCS-A* is a vari-
ant of the A* algorithm. It maximizes a new heuristic esti-
mate of the LCS in each search step so that the longest com-
mon subsequence can be found. As a natural extension of
MLCS-A*, a fast algorithm, MLCS-APP, is also proposed to
deal with large volume of biological data for which finding
a LCS within reasonable time is impossible. The benchmark
test shows that MLCS-APP is able to extract common subse-
quences close to the optimal ones and that MLCS-APP sig-
nificantly outperforms existing heuristic approaches. When
applied to 8 protein domain families, MLCS-APP produced
more accurate results than existing multiple sequence align-
ment methods.

Introduction
Assume sequences are strings of characters defined over a
finite alphabet Σ. Let x and y be two sequences of lengths
n and k correspondingly. For a sequence x = a1a2 . . . an,
a sequence y = ai1ai2 . . . aik

is called a subsequence of x
if 1 ≤ ij ≤ n, for 1 ≤ j ≤ k, and ir < it, for 1 ≤ r <
t ≤ k. Let S = {s1, s2, . . . , sd} be a set of sequences over
alphabet Σ. A multiple longest common subsequence
(MLCS) for set S is a sequence y such that (i) y is a
subsequence of si, 1 ≤ i ≤ d, and (ii) y is the longest one
satisfying (i).

The MLCS problem is to find the longest subsequence
shared between two or more strings. It is a classical com-
puter science problem, with important applications in many
fields, such as information retrieval and computational bi-
ology (Sheridan and Venkataraghavan 1992; Attwood and
Findlay 1994; Sankoff and Blanchette 1999; Bourque and
Pevzner 2002). For over 30 years, significant efforts have
been made to find efficient algorithms for the MLCS prob-
lem. Many of them, however, address the simplest case of

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MLCS of two strings, also known as the longest common
subsequence (LCS) problem (Hirschberg 1977; Masek and
Paterson 1980; Smith and Waterman 1981). The general
case of the MLCS problem of any given number of strings
is NP-hard (Maier 1978). Methods that find the longest
common subsequence for arbitrary number of strings are
few (Hakata and Imai 1998; Chen, Wan, and Liu 2006; Ko-
rkin, Wang, and Shang 2008) and they could benefit greatly
from improving their computation times. A method that
solves the general MLCS problem efficiently can be applied
to many computational biology and computational genomics
problems that deal with biological sequences (Sankhoff and
Kruskal 1983; Bork and Koonin 1996; Korkin and Goldfarb
2002). With the increasing volume of biological data and
prevalent usage of computational sequence analysis tools, it
is expected that the general MLCS algorithm will have a sig-
nificant impact on computational biology methods and their
applications.

The contribution of this paper is twofold. First, an algo-
rithm, MLCS-A*, is presented to find a LCS for any given
number of sequences. MLCS-A* is a variant of the A* algo-
rithm, a provably optimal best-first search algorithm (Pearl
1984). But unlike A* that finds the least-cost path in a
graph, MLCS-A* searches in a multidimensional matrix for
a longest path that corresponds to a LCS. Second, a fast ap-
proximate algorithm MLCS-APP, which is derived by dis-
carding points with low heuristic function values, is pre-
sented. This allows one to apply MLCS-APP to the con-
servation analysis of the real-world biological data, which
includes both protein and gene families, and for which find-
ing an optimal MLCS is often computationally not feasible.
The benchmark test shows that MLCS-APP is able to effi-
ciently extract common subsequences that are close to the
optimal solutions and that on the benchmark sets of biolog-
ical sequences MLCS-APP outperforms existing heuristic
approaches.

Related Works

Classical methods for the MLCS problem are based on dy-
namic programming (Sankoff 1972; Smith and Waterman
1981). In its simplest case, given two sequences s1 and s2

of length n1 and n2 respectively, a dynamic programming
algorithm iteratively builds a n1 × n2 score matrix L, in
which L[i, j], 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, is the length of a

1287

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

LCS between two prefixes s1[1, . . . , i] and s2[1, . . . , j].

L[i, j]=

{

0, if i or j = 0
L[i − 1, j − 1] + 1, if s1[i] = s2[j]
max(L[i, j−1], L[i−1, j]), if s1[i] 6= s2[j]

(1)
In a straightforward implementation of dynamic program-

ming, all the entries in L are calculated. The resulting
algorithm has time and space complexity of O(nd) for d
sequences of length n. Various approaches have been in-
troduced to reduce the complexity of dynamic program-
ming (Hirschberg 1977; Masek and Paterson 1980; Hsu and
Du 1984; Apostolico, Browne, and Guerra 1992). Unfortu-
nately, these approaches primarily address the special case
of 2 sequences.

Employing the idea of dynamic programming, the domi-
nant point approach limits its search to exploring a smaller
set of dominant points rather than the whole set of posi-
tions in L. Dominant points are minimal points in a mul-
tidimensional search space. Knowing those points allows
one to reduce the search space size and the computation
time by orders of magnitude. The initial idea of dom-
inant points was introduced by Hirschberg (1977). The
dominant-point approach has since been successfully ap-
plied to the two-sequences cases (Chin and Poon 1990;
Apostolico, Browne, and Guerra 1992). Dominant-point
algorithms for more than 2 sequences have also been pro-
posed (Hakata and Imai 1998; Chen, Wan, and Liu 2006;
Wang, Korkin, and Shang 2009) and they are shown to be
overwhelmingly faster than dynamic programming.

Besides the approaches that find exact LCS, heuristic
algorithms for the MLCS problem have also been pro-
posed. Initial heuristic algorithms (Chin and Poon 1994;
Jiang and Li 1994) (and some later efforts) returned a com-
mon subsequence with a guaranteed approximation factor.
Despite the theoretical importance of these algorithms, they
were not attractive since the common subsequence extracted
by them contains only one letter. Thereafter, various algo-
rithms with improved solution, such as THSB (time hori-
zon specialized branching heuristic) (Easton and Singireddy
2008) and ACO (ant colony optimization) (Shyu and Tsai
2009), have been presented and many successful applica-
tions have been exhibited. More recently, Blum et al. stud-
ied the Beam search (BS) algorithm (2009) and showed that
BS outperforms other approaches from the literature in so-
lution quality as well as in algorithm efficiency.

Definitions and Basic Properties

Let Σ = {a1, a2, . . . , a|Σ|} be a finite alphabet of size |Σ|.
Let S = {s1,s2, . . ., sd} be a set of d (assume d ≥ 2)
sequences of length n1, n2, . . . , nd, respectively, over Σ. A
point p on S is denoted as p = (p1, p2, . . . , pd) , where each
pi , 1 ≤ i ≤ d, 1 ≤ pi ≤ ni, is a coordinate of p for the
corresponding sequence si.

For any two sequences si and sj in S of length ni and nj

respectively, a ni×nj score matrix Mij is iteratively built, in
which Mij [x, y], 0 ≤ x ≤ ni, 0 ≤ y ≤ nj , is the length of
the longest common subsequence (LCS) between two suf-

fixes si[x + 1, . . . , ni] and sj[y + 1, . . . , nj]. Specifically,
the score matrix Mij is defined as follows:

Mij[x,y]=

{

0, x=ni or y=nj

Mij [x+1, y+1] + 1, si[x+1]=sj[y+1]
max(Mij[x,y+1], Mij[x+1,y]), otherwise

(2)
The heuristic estimate h(p), where p = (p1, p2, . . . , pd),

of the length of the longest common subsequences among
d suffixes si[pi + 1, . . . , ni], 1 ≤ i ≤ d, is computed from
Mij , i.e. from 2-dimensional LCS,

h(p) = min
1≤i,j≤d

Mij [pi, pj] (3)

Lemma 1. h(p) is equal to or greater than the length of the
LCS among sequences s1[p1+1, . . . , n1],s2[p2+1, . . . , n2],
. . ., and sd[pd + 1, . . . , nd].

Proof. Let C be a LCS among sequences s1[p1 +
1, . . . , n1],s2[p2 + 1, . . . , n2], . . ., and sd[pd + 1, . . . , nd].
The length of C is no greater than Mij [pi, pj], 1 ≤ i, j ≤ d,
since C is also a common subsequence between si[pi +
1, . . . , ni] and sj [pj + 1, . . . , nj].

A point p = (p1, p2, . . . , pd) on a set S is called a match
if s1[p1] = s2[p2] = . . . = sd[pd]. For example, for two
sequences, s1 = GATTACA and s2 = GTAATCTAAC,
points (1, 1) and (2, 3) are two matches, corresponding to
symbols G and A, respectively. For any two points p =
(p1, p2, . . . , pd) and q = (q1, q2, . . . , qd), if pi < qi, 1 ≤
i ≤ d, we denote p < q. A match q of symbol a ∈ Σ
is called a a-successor of a point p, if p < q and there
is no other match r of a symbol such that p < r < q.
The set of a-successor for p is denoted as Suc(p, a).
The set of all successors for p is denoted as Suc(p, Σ) =
∪a∈Σ Suc(p, a). The set of all successors for a set of points
A is denoted as Suc(A, Σ) = ∪p∈A Suc(p, Σ).

The following Corollary 1 can be inferred directly from
the definition of h(p).

Corollary 1. h(q) < h(p) if q ∈ Suc(p, Σ).

Let |MLCS| represent the length of the LCS among se-
quences s1, s2, . . ., sd and L(p) be the length of the LCS
of prefixes s1[1, . . . , p1], s2[1, . . . , p2], . . ., sd[1, . . . , pd].
Then, function f(p) is defined to estimate |MLCS|,

f(p) = L(p) + h(p) (4)

The following Corollary 2 can be inferred trivially from
Lemma 1.

Corollary 2. f(p) ≥ |MLCS| for any point p on a LCS.

In Section below, function g(p) is used to compute L(p).
Correspondingly, the definition of function f(p) in Eq. 4 is
modified as f(p) = g(p) + h(p).

To compare two points p and q and determine which one
should be visited first, we define >H , a lexicographical order
on f and h.

p >H q ⇔ (f(p) > f(q)) ∨ (f(p) = f(q) ∧ h(p) > h(q))
(5)

1288

Two New MLCS Algorithms

In this section, two new algorithms for the general case of
the MLCS problems are presented.

MLCS-A* algorithm

Let T be a set of points whose successors, Suc(T, Σ), are
known and Q be a subset of successors of T whose succes-
sors, Suc(Q, Σ), are unknown. The following algorithm in
Fig. 1 iteratively explores points in Q.

Algorithm MLCS-A*(s1,s2,. . .,sd)

Preprocessing;
01 p0 = (0,0,...,0);
02 parent(p0) =null;
03 g(p0) = 0;
04 f(p0) = h(p0);
05 Q = {p0};
06 T = ∅;

07 while (|Q| > 0)
08 p← PriorityQueue(Q);
09 if (h(p) == 0)
10 return CommonSeq(p);
11 for each (q ∈ Suc(p,Σ))
12 if (q /∈ Q)
13 Q = Q ∪ {q};
14 UpdateSuc(p, q);
15 else if (g(q) < g(p) + 1)
16 UpdateSuc(p, q);
17 T =T∪{p}; //For the purpose of correctness proof only

//Update point q
function UpdateSuc(p, q)

18 parent(q) = p;
19 g(q) = g(p) + 1;
20 f(q) = g(q) + h(q);

//Extract common subsequence

function CommonSeq(p)
21 if (parent(p) 6=null)
22 CommonSeq(parent(p));
23 print s1[p];
24 return g(p);

Figure 1: The pseudocode of the algorithm MLCS-A*

The main part of the algorithm consists of three functions.
The first one, MLCS-A*(), iteratively selects a point p from
a priority queue and finds all successors of p. The priority
queue in line 8 extracts a point p from Q such that there is
no another point q in Q satisfying q >H p. Another function
UpdateSuc() updates the value of f(q) for a point q and sets
p as the parent of q. Finally, the function CommonSeq()
prints a common subsequence and returns the length of the
corresponding subsequence.

Proof of the algorithm

Theorem 1 below demonstrates that MLCS-A* algorithm is
optimal, i.e. it finds the longest common subsequence. In

order to prove Theorem 1, two Lemmas are first presented.

Lemma 2. p >H q holds for any points p ∈ T, q ∈ Q.

Proof. The Lemma is proved by induction. After the first
iteration of the while loop between lines 7 and 17, we have
T = {p0}, Q = Suc(p0, Σ). p0 >H q is true for each
q ∈ Q, since g(q) = 1 and h(p0) > h(q)(from Corollary 1).
Suppose the Lemma is still true after k, k ≥ 1, iterations of

the while loop. Then, at the k + 1th iteration of the loop,
let p be a point selected from Q in line 8 for expansion. For
any successor q of p, it can be inferred from Corollary 1 that
h(p) > h(q). If q is a new point to be added into Q, then
f(q) = g(p)+1+h(q) ≤ g(p)+h(p) = f(p). If q is already
in Q, f(q) ≤ f(p) is also true, since g(q) is no greater than
g(p) + 1. In either case, p >H q holds. Therefore, after
moving p to T in line 17, the Lemma remains true.

Lemma 3. In Q, there is at least one point p satisfying: (i) p
is on a longest common subsequence and, (ii) g(p) = L(p).

Proof. The Lemma is proved by induction. The first itera-
tion of the while loop between lines 7 and 17 adds the first
letters of all the longest common subsequences into Q and
correctly sets 1 to the function g(p), p ∈ Q. So the Lemma
is true in the initial step.

Suppose the Lemma remains true after k, k ≥ 1, itera-
tions of the while loop. Then, let p be a point extracted from

Q at the k + 1th iterations of the while loop in line 8. For
simplicity, suppose p is the only point in Q satisfying both
conditions (i) and (ii) (otherwise, the Lemma trivially holds
after processing p). Additionally, suppose h(p) > 0 (other-
wise the program terminates). Let C be a longest common
subsequence to which p belongs. Let q be a point on C im-
mediately following p. Then, p >H q, since h(p) > h(q)
and g(p) + 1 = L(p) + 1 = L(q) ≥ g(q). The function
g(q) of q will be set exactly to L(q) = L(p) + 1 by function
UpdateSuc() after lines 12-16. Thus, a point q is found in Q
satisfying both (i) and (ii). Therefore, the Lemma still holds

after the k + 1th iteration.

Theorem 1. Let p be a point extracted from Q in line 8. If
h(p) = 0, then g(p) = |MLCS|.

Proof. Lemma 3 shows that in Q there is at least one point
q satisfying that q belongs to a longest common subse-
quence and that g(q) = L(q). Then, it can be inferred from
Corollary 2 that g(p) = f(p) ≥ f(q) = L(q) + h(q) ≥
|MLCS|.

Implementation details and complexity analysis

For convenience, let’s assume below that the lengths of all
sequences are equal to n.

It takes O(n2) time to build a 2-dimensional score matrix
Mij , 1 ≤ i, j ≤ d (defined by Eq. 2). Instead of calculating
d(d − 1)/2 score matrices, one for each pair of sequences,
only d − 1 matrices, Mi,i+1, 1 ≤ i ≤ d − 1, are computed
in practice, which are enough to provide tight upper bound
of the length of the LCS. The calculation of d − 1 matrices
takes O(dn2) time. With these score matrices, the function
h(p) can be computed in O(d) time.

1289

To efficiently find all successors of a point, a matrix
MT = {[a, j, i]}, a ∈ Σ, 0 ≤ j ≤ max1≤k≤d{|sk|}, 1 ≤
i ≤ d, is calculated in the preprocessing step of MLCS-
A*, where each element MT [a, j, i] specifies the position
of the first occurrence of character a in the i-th sequence,
starting from the (j + 1)-st position in that sequence. If
a does not occur any more in the i-th sequence, the value
of MT [a, j, i] is equal to 1 + max1≤k≤d{|sk|}. With the
matrix MT , the a-successor q = (q1, q2, . . . , qd) of a point
p = (p1, p2, . . . , pd) can be calculated in O(d) time, using
the formula qi = MT (a, pi, i), 1 ≤ i ≤ d. The calculation
of matrix MT takes O(|Σ| dn) time.

Let N be the total number of points visited (i.e. N =
|T |+ |Q|). Then, it takes O(log N) time to extract a point p
from the priority queue in line 8. p has at most |Σ| succes-
sors, each requiring O(d) time from previous analysis. The
operations on set Q take constant time by storing it in a hash
table. Therefore, totally it takes O(log N + |Σ|d) time to
process one point.

In summary, it takes O(dn2 + |Σ|dn+ |Σ|dN +N log N)
time altogether to extract a LCS. As the MLCS problem is
NP-hard, it is expected that N grows non-polynomially with
the size of input (otherwise P = NP). By ignoring insignif-
icant terms, the time complexity of MLCS-A* is obtained as
follows,

O(N log N) (6)

While an accurate estimate of N remains an open ques-
tion, it is not hard to show that N is far smaller than nd, the
number of points that classical dynamic programming algo-
rithm visits, since the search of MLCS-A* is restricted to a
subset of matches in matrix L (defined by Eq. 1). Suppose
the occurrence of each letter in Σ is evenly distributed in
sequences. Then, the total number of matches in L can be
estimated to (nd/|Σ|d−1). Hence, N < nd/|Σ|d−1 << nd.

MLCS-APP algorithm

It is computationally expensive to find a LCS for multi-
ple strings since N grows quickly with the size of input.
With increasing volume of data, MLCS-A* algorithm would
quickly become impractical. Therefore, it is essential to
adapt MLCS-A* to large volume applications.

Fig. 2 presents the MLCS-APP algorithm, an adaption
of MLCS-A*. MLCS-APP differs from MLCS-A* in lines
8-13, which preserves for later expansion points with high
value of f(p) (i.e. points p satisfying y−c ≤ f(p)), and dis-
cards those with low f(p). Here, parameter c is a constant.
By adjusting the value of c, the length of the returned com-
mon subsequences and the running time can be balanced.
Besides, to restrict memory consumption, an upper bound k
is set to Q′ (lines 10-11) so that |Q′| ≤ k. If there are more
than k points in Q′, |Q′|−k points with the lowest f(p) will
be discarded. The parameters k and c jointly determine the
solution quality. In the Experimental Section below, k and c
are fixed at 2000 and 20 respectively.

Next the time complexity of MLCS-APP is estimated.
Each iteration of the while loop in line 7 expends points
p ∈ Q′ and therefore increases g(q) for q ∈ Suc(p, Σ).

Algorithm MLCS-APP(s1,s2,. . .,sd)

Preprocessing;
01 p0 = (0,0,...,0);
02 parent(p0) =null;
03 g(p0) = 0;
04 f(p0) = h(p0);
05 Q = {p0};
06 //T = ∅;

07 while (|Q| > 0)
08 y = maxp∈Q f(p);
09 Q′ = {p|p ∈ Q ∧ y − c ≤ f(p)};
10 if (|Q′| > k)
11 remove points of low f value so that |Q′| = k;
12 Q = ∅;
13 for each (p ∈ Q′)
14 if (h(p) == 0)
15 return CommonSeq(p);
16 for each (q ∈ Suc(p,Σ))
17 if (q /∈ Q)
18 Q = Q ∪ {q};
19 UpdateSuc(p, q);
20 else if (g(q) < g(p) + 1)
21 UpdateSuc(p, q);

Figure 2: The pseudocode of the algorithm MLCS-APP

Since g(q) ≤ n, the number of iteration of the while loop
is no more than n. Moreover, given |Q′| ≤ k, the number
of points processed within the while loop is at most k |Σ|.
From these two observations, the complexity of MLCS-APP
is derived as follows,

O(dn2 + k |Σ| dn) (7)

Experimental Results

First, MLCS-A* was compared with MLCS-APP. Random
DNA sequences independently generated from the alphabet
Σ = {A, C, G, T} were used as test data. The length of se-
quences was fixed at 100 and the number of sequences was
different in each test case. Table 1 shows the lengths of the
common subsequences, columns g(∗), returned by the two
algorithms and the corresponding computation times (in sec-
onds) of them. It indicates that in most cases MLCS-APP
successfully found the longest common subsequences. For
the last case where MLCS-APP failed to return the longest
one, the length of the common subsequence extracted by
MLCS-APP is very close to the length of the optimal ones.
In addition, the results show that MLCS-APP is significantly
faster than MLCS-A* when applied to a larger number of se-
quences.

Next, the number of sequences was fixed at 5 and the
lengths of sequences were changed. Then, both algorithms
were run on the new test set. The comparative results in
Table 2 indicate again that MLCS-APP achieves a signif-
icant improvement in efficiency over MLCS-A* at a very
low price of solution precision.

1290

Number of MLCS-A* MLCS-APP
Speedup2

sequences g(∗)1 time g(∗)1 time

4 46 0.05 46 0.31 0.16
5 43 0.53 43 0.28 1.89
6 40 3.30 40 0.27 12.22
7 37 25.39 37 0.23 110.39
8 36 93.42 36 0.23 406.17
9 35 195.10 34 0.23 848.26

1. g(*) denotes the lengths of the common subsequences
2. Speedup is the ratio of the running time of MLCS-A*
to the running time of MLCS-APP.

Table 1: Comparison of MLCS-APP to MLCS-A* on ran-
dom DNA sequences of length 100

Length of MLCS-A* MLCS-APP
Speedup

sequences g(∗) time g(∗) time

100 43 0.53 43 0.28 1.89
120 51 1.03 51 0.36 2.86
140 60 5.73 59 0.42 13.64
160 70 8.80 69 0.50 17.60
180 77 25.47 76 0.56 45.48
200 84 70.47 83 0.63 111.86

Table 2: Comparison of MLCS-APP to MLCS-A* on 5 ran-
dom DNA sequences of different lengths

MLCS-APP was also compared with the state-of-the-art
heuristic algorithm, Beam search algorithm (Blum, Blesa,
and López-Ibáńez 2009), on a large volume of biological
sequences. Specifically, a set of gene and protein sequences
from the rat (Rattus Norvegicus) genome, which was pro-
posed by (Shyu and Tsai 2009) and applied later to bench-
mark Beam search, was used as test data. The length of each
biological sequence was set to 600 while the number of se-
quences in each test was varied from 10 to 200.

Table 3 shows the running times and the lengths of
common subsequences returned by MLCS-APP and Beam
search for each test case. As Beam search is not publicly
available, its results were taken directly from the published
paper (Blum, Blesa, and López-Ibáńez 2009). Beam search
was benchmarked on an Intel Core2 1.66GHz. MLCS-APP
was run on the same computer for comparative purpose. As
indicated in Table 3, MLCS-APP is on average 10 times
faster than Beam search, while in 90% of cases it extracts
common subsequences generally longer than or equal to
Beam search.

Finally, MLCS-APP was compared with current multi-
ple sequence alignment programs used in practice, ClustalW
(version 2) (Larkin et al. 2007) and MUSCLE (version
4) (Edgar 2004). Two basic command line options, ”–input”
and ”–log”, were used for the execution of MUSCLE. Eight
protein domain families were chosen as the test data set from
the Pfam database (Finn et al. 2008), a collection of pro-
tein families that includes their annotations and multiple se-
quence alignments. Eight sequences of roughly the same
length, i.e., around 200 amino acids, were selected from
each family. The names of protein families are provided in

|Σ|
Number of Beam search MLCS-APP
sequences g(∗) time g(∗) time

10 191 9.7 194 2.0
15 173 12.3 180 1.9
20 163 12.6 165 1.7
25 162 15.8 164 2.0

4 40 146 19.4 151 2.0
60 144 26.7 147 2.8
80 135 31.8 137 3.1
100 132 38.5 134 3.7
150 121 51.1 125 4.9
200 121 69.1 122 6.6

10 69 27.4 70 3.3
15 60 36.7 61 3.0
20 51 34.4 53 2.4
25 51 39.0 51 2.7

20 40 49 47.4 48 2.9
60 46 60.3 46 3.7
80 43 64.4 43 3.9
100 38 64.8 38 4.3
150 36 77.8 35 5.2
200 33 101.0 33 7.0

Table 3: Comparison of MLCS-APP to Beam search for pro-
tein and gene sequences in Rattus Norvegicus

Table 4, sorted in increasing order of the average pairwise
sequence identities, which were computed using MUSCLE.

Table 4 shows the lengths of the common subsequences
extracted by the three methods from the given sequences.
The common subsequences were retrieved from alignment
by counting the number of residues that are in common
among all the sequences in the alignment. Table 4 indicates
that the common subsequences calculated by MLCS-APP
are consistently longer than those extracted by ClustalW
and MUSCLE. It also demonstrates that MLCS-APP found
the LCS in 7 out of 8 cases, while ClustalW and MUS-
CLE found none. More importantly, in the cases such as
the protein family AP endonuc 2, when the pairwise iden-
tity among sequences is poor, MLCS-APP still worked well,
while both ClustalW and MUSCLE failed to find residues
that are in common among all the sequences.

Acknowledgements

This research was supported by NIH Grant
5R21GM078601-02. We are also grateful to the au-
thors of Beam search algorithm for sharing with us its test
data.

References

Apostolico, A.; Browne, S.; and Guerra, C. 1992.
Fast linear-space computations of longest common subse-
quences. Theor. Comput. Sci. 92(1):3–17.

Attwood, T., and Findlay, J. 1994. Fingerprinting g-protein-
coupled receptors. Protein Eng. 7(2):195–203.

Blum, C.; Blesa, M. J.; and López-Ibáńez, M. 2009. Beam

1291

Family ID (accession number)
Average length Pairwise sequence Length of optimal Length of common subsequences
of sequences identity subsequences ClustalW MUSCLE MLCS-APP

AP endonuc 2(PF01261) 205 19.6% 30 0 0 29
DUF2077(PF09850) 205 25.2% 35 7 7 35

NikM(PF10670) 207 35.7% 40 10 10 40
Nop25(PF09805) 211 45.9% 67 30 30 67

Exon PolB(PF10108) 213 56.5% 76 63 63 76
Frag1(PF10277) 205 65.1% 93 87 87 93

G6PD bact(PF10786) 203 74.9% 105 100 100 105
Adeno hexon C(PF03678) 215 85.2% 136 133 133 136

Table 4: The lengths of the common subsequences extracted by ClustalW, MUSCLE and MLCS-APP from the protein domain
families selected from Pfam database. Eight sequences of roughly the same length, i.e., around 200 amino acids, were selected
from each family.

search for the longest common subsequence problem. Com-
put. Oper. Res. 36(12):3178–3186.

Bork, P., and Koonin, E. 1996. Protein sequence motifs.
Curr.Opin.Struct.Biol. 6:366–376.

Bourque, G., and Pevzner, P. 2002. Genome-scale evolution:
reconstructing gene orders in the ancestral species. Genome
Research 12(1):26–36.

Chen, Y.; Wan, A.; and Liu, W. 2006. A fast parallel algo-
rithm for finding the longest common sequence of multiple
biosequences. BMC Bioinformatics 7(Suppl 4):S4.

Chin, F. Y. L., and Poon, C. K. 1990. A fast algorithm for
computing longest common subsequences of small alphabet
size. J. Inf. Process. 13(4):463–469.

Chin, F., and Poon, C. K. 1994. Performance analysis of
some simple heuristics for computing longest common sub-
sequences. Algorithmica 12:293–311.

Easton, T., and Singireddy, A. 2008. A large neighborhood
search heuristic for the longest common subsequence prob-
lem. Journal of Heuristics 14(3):271–283.

Edgar, R. C. 2004. Muscle: multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids Re-
search 32(5):1792–1797.

Finn, R. D.; Tate, J.; Mistry, J.; Coggill, P. C.; Sammut, S.
J. J.; Hotz, H.-R. R.; Ceric, G.; Forslund, K.; Eddy, S. R.;
Sonnhammer, E. L.; and Bateman, A. 2008. The pfam pro-
tein families database. Nucleic acids research 36(Database
issue):D281–288.

Hakata, K., and Imai, H. 1998. Algorithms for the longest
common subsequence problem for multiple strings based
on geometric maxima. Optimization Methods and Software
10:233–260.

Hirschberg, D. S. 1977. Algorithms for the longest common
subsequence problem. J. ACM 24(4):664–675.

Hsu, W. J., and Du, M. W. 1984. Computing a longest
common subsequence for a set of strings. BIT Numerical
Mathematics 24(1):45 – 59.

Jiang, T., and Li, M. 1994. Automata, Languages and Pro-
gramming. chapter On the approximation of shortest com-
mon supersequences and longest common subsequences,
191 – 202.

Korkin, D., and Goldfarb, L. 2002. Multiple genome rear-
rangement: a general approach via the evolutionary genome
graph. Bioinformatics 18(suppl 1):S303–311.

Korkin, D.; Wang, Q.; and Shang, Y. 2008. An efficient
parallel algorithm for the multiple longest common subse-
quence (mlcs) problem. In ICPP ’08: Proc. 37th Intl. Conf.
on Parallel Processing, 354–363. Washington, DC, USA:
IEEE Computer Society.

Larkin, M.; Blackshields, G.; Brown, N.; Chenna, R.;
McGettigan, P.; McWilliam, H.; Valentin, F.; Wallace, I.;
Wilm, A.; Lopez, R.; Thompson, J.; Gibson, T.; and Hig-
gins, D. 2007. Clustal w and clustal x version 2.0. Bioinfor-
matics 23(21):2947–2948.

Maier, D. 1978. The complexity of some problems on sub-
sequences and supersequences. J. ACM 25(2):322–336.

Masek, W. J., and Paterson, M. S. 1980. A faster algorithm
computing string edit distances. J. Comput. Syst. Sci. 18 –
31.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Sankhoff, D., and Kruskal, J. B. 1983. Time warps, string
edits and macromolecules: the theory and practice of se-
quence comparison. AddisonWealey.

Sankoff, D., and Blanchette, M. 1999. Phylogenetic invari-
ants for genome rearrangements. Journal of Computational
Biology 6:431–445.

Sankoff, D. 1972. Matching sequences under dele-
tion/insertion constraints. Proc. Natl. Acad. Sci. USA
69(1):4 – 6.

Sheridan, R. P., and Venkataraghavan, R. 1992. A system-
atic search for protein signature sequences. Proteins: Struc-
ture, Function, and Genetics 14(1):16–28.

Shyu, S. J., and Tsai, C.-Y. 2009. Finding the longest com-
mon subsequence for multiple biological sequences by ant
colony optimization. Comput. Oper. Res. 36(1):73–91.

Smith, T. F., and Waterman, M. S. 1981. Identification of
common molecular subsequences. Journal of Molecular Bi-
ology 147(1):195 – 197.

Wang, Q.; Korkin, D.; and Shang, Y. 2009. Efficient domi-
nant point algorithms for the multiple longest common sub-
sequence (mlcs) problem. In IJCAI, 1494–1500.

1292

