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Abstract

Fully characterizing structural and functional sites in pro-
teins is a fundamental step in understanding their roles in the
cell. This extremely challenging combinatorial problem re-
quires determining the number of sites in the protein and the
set of residues involved in each of them. We formulate it
as a distance-based supervised clustering task, where train-
ing proteins are employed to learn a proper distance func-
tion between residues. A partial clustering is then returned
by searching for maximum-weight cliques in the resulting
weighted graph representation of proteins. A novel stochas-
tic local search algorithm is proposed to efficiently generate
approximate solutions. Our method achieves substantial im-
provements over a previous structured-output approach for
metal binding site prediction. Significant improvements over
the current state-of-the-art are also achieved in predicting cat-
alytic sites from 3D structure in enzymes.

Introduction
In order to accomplish their biological function, proteins of-
ten interact with different types of external molecules such
as metal ions, prosthetic groups and various organic com-
pounds. Metalloproteins (Bertini, Sigel, and Sigel 2001)
bind metal ions in order to stabilize their three-dimensional
structure, induce conformational changes or assist protein
function, such as electron transfer in cytochromes. Metal
binding sites are characterized by the set of protein atoms
directly involved in binding the ion, called ligands, and the
overall geometry of the site. Furthermore, the same pro-
tein often binds multiple ions, with typical numbers ranging
from one to four. Enzymes are a fundamental type of pro-
teins which accelerate chemical processes within a cell, by
complexing with the substrate and thus lowering the activa-
tion energy of the reaction. Functional residues play various
roles in the catalytic process, such as donating electrons or
polarizing cofactor bonds (Bartlett et al. 2002). Solely bind-
ing substrates, cofactors or metals, which are often involved
in enzymatic reactions, does not characterize a residue as
catalytic according to the Catalytic Site Atlas (CSA) (Porter,
Bartlett, and Thornton 2004).

Being able to predict metal binding sites as well as en-
zyme active sites in novel proteins is a fundamental step in
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understanding their functioning. Both problems have been
mostly addressed as a binary classification task at the residue
level: given a protein sequence, predict for each residue
whether it is involved in a metal binding site (Passerini et
al. 2006), (Shu, Zhou, and Hovmoller 2008) or an active
site (Tong et al. 2009), (Cilia and Passerini 2010) respec-
tively. Most existing approaches for modeling the full metal
binding geometry assume knowledge of the 3D structure of
the protein (Ebert and Altman 2008; Babor et al. 2008) and
focus on detecting apo-proteins, i.e. proteins solved without
the ion. A recent attempt (Frasconi and Passerini 2008) to
predict metal binding geometry from sequence formulates
the problem as a structured-output task. The proposed solu-
tion is a search algorithm greedily assigning residues to ions
(or a default nil ion if predicted as free) guided by a scoring
function trained to rank correct moves higher than incorrect
ones. The algorithm is guaranteed to find the solution max-
imizing the overall score, given the matroid structure of the
problem. However, the scoring function is learned from ex-
amples and there is no guarantee that it correctly approxi-
mates the true underlying function.

We take here a different viewpoint and formalize the prob-
lem as a distance-based supervised clustering task (Basu
2005). Given a set of training instances, we first learn a
similarity function predicting whether two residues jointly
participate in a certain metal or active site. The learned sim-
ilarity measure is subsequently fed to a maximum-weight
clique algorithm collecting sets of residues maximizing their
pairwise similarities. The algorithm has a number of desir-
able features including automatic selection of the number of
clusters, natural handling of overlapping clusters, and scal-
ability to large datasets. Experimental results show a sub-
stantial improvement over the structured-output approach
for metal binding geometry prediction. Significant improve-
ments over the state-of-the-art are also obtained for active
site prediction from protein 3D structure, where both node
and edge weights are employed in order to exploit both local
predictions and spatial constraints.

Problem Description and Formalization
Given a protein sequence as a string of characters in the al-
phabet of 20 amino acids, the problem consists of: detect-
ing the number of binding or catalytic sites; collecting for
each site the set of protein residues involved. Metal binding
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Figure 1: Histogram of the catalytic propensities of the
residues in the experimental dataset HA superfamily (see ex-
perimental section for details).

sites tend to be rather specific in terms of possible ligands
with cysteine (C), histidine (H), aspartic (D) and glutamic
(E) acids being by far the most common ligands in tran-
sition metals. Cysteines and histidines are the vast major-
ity of ligands in structural sites, while aspartic and glutamic
acids are quite common in proteins and their relative bind-
ing frequency is thus very limited (Passerini et al. 2006).
A more complex situation can be observed with alkali and
alkaline-earth metals, which often bind proteins through the
oxygen in backbone carbonyl groups. Catalytic propensity
is even less specific, given the number of different roles that
a residue can play within the active site. Figure 1 reports the
catalytic propensity of the whole set of amino acids, show-
ing that only few of them can be safely discarded. Previous
results (Cilia and Passerini 2010) on the simpler binary clas-
sification task actually indicate that keeping all candidates
produces slightly better results on average: the predictor oc-
casionally manages to correctly predict rare amino acids as
catalytic without significantly affecting precision.

Concerning the number of sites, metalloproteins usually
contain between one and three sites, sometimes four and oc-
casionally more. The coordination number of a bound ion,
i.e. the total number of its ligands, varies from one to about
eight depending on the metal. Values between two and four
are the most frequent for transition metals. Figure 2 shows
the metal binding geometry of the equine herpes virus-1
(PDB code 1CHC), where candidate ligands in L = {C,H}
not binding any ion are marked in grey. Contrarily to metal
binding sites, enzymes tend to have a single catalytic site in-
volving a larger number of residues, ranging from 1 to 9 in
the experimental dataset we used. Multiple active sites can
actually be found in some multimeric proteins, such as the 3-
isopropylmalate dehydrogenase (PDB code 1A05). Figure 3
shows the active site of cloroperoxidase T (PDB code 1A7U
and UniProtKB entry O31168) with seven residues corre-
sponding to seven different amino acids involved. Note that
proximity in sequence only partially relates to involvement
in the same site, as the three-dimensional arrangement of

Figure 2: Sequence of the equine herpes virus-1 (PDB code
1CHC). Residues composing the metal binding sites are
highlighted in different colors.

Figure 3: Sequence of the cloroperoxidase T (PDB code
1A7U and UniProtKB entry O31168). Residues composing
the active site are highlighted in red.

the protein can bring quite distant residues closer. However,
additional features contribute to characterize target residues,
such as conservation profile and residue neighborhood.

Given these premises, we formulate the problem as a su-
pervised clustering task. We provide a common formula-
tion for both metal binding site and active site prediction.
Slightly abusing terminology, we refer to residues involved
in either type of site as ligands. While the two problems
are treated as separate tasks in the experiments, they are in-
deed highly correlated as metal binding sites are often part
of a larger active site. We are planning to extend our work
to predict a structured set of sites in order to jointly address
these problems.

A protein sequence is represented as the set x of its can-
didate ligands, that is residues belonging to L. The output y
for the sequence is a subset of the powerset of x, i.e. y ⊆
P(x). Outputs for proteins in Figures 2 and 3, for instance,
would be represented as {{c1, c2, c4, c5}, {c3, h1, c6, c7}}
and {f2, s8,m2, a14, p7, d18, h6} respectively, assuming L
is equal to {C,H} for metal binding sites and the whole set
of amino acids for catalytic sites. The desired output is thus
a partial clustering of residues, where only predicted ligands
are reported. Furthermore, at least for metal binding sites,
clusters can overlap, as the same residue can simultaneously
bind two ions, as happens for glutamic and aspartic acids
with their two side-chain oxygen atoms. For comparison
with previous approaches, experiments only deal with non-
overlapping clusters, but our approach can naturally handle
overlaps, as described in the next section.

Distance-based Supervised Clustering with
Maximum-weight Cliques

A training set of labelled proteins can be easily obtained
from experimentally solved protein structures and catalytic
annotations, and a supervised clustering approach can thus
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be pursued. We opt for a distance-based supervised ap-
proach (Basu 2005), where training instances are used to
learn an appropriate distance (or similarity) measure to be
later used in the clustering. The learning stage simply con-
sists of training a pairwise classification function F (xi, xj)
predicting for each pair of residues xi and xj in x whether
they belong to the same site. We employ a pairwise support
vector machine (SVM) as the underlying classification func-
tion. More complex alternatives can be pursued, as will be
detailed in the Discussion.

Given a learned similarity function F , we represent a set
x as a weighted graph, removing edges whose weight is be-
low a certain threshold φ and rescaling remaining weights
to be positive. A maximum-weight clique algorithm is then
run on the graph in order to return a set of maximal cliques,
which correspond to the predicted sites. The rationale for
the approach is that given a reasonable pairwise similarity
measure, the algorithm should isolate few densely connected
components which correspond to the desired solution while
discarding most of the nodes in the graph. The algorithm
can be asked to return a single large cluster, as typical of the
active site prediction task, or a set of possibly overlapping
maximal cliques, as for the metal binding site case, where
the number of clusters cannot be specified a priori.

The Maximum-weight Clique Clustering
Algorithm

Maximum Clique is a paradigmatic NP-hard problem with
relevant applications in many areas; its weighted versions
originate from fields such as computer vision, pattern recog-
nition and robotics (Ballard and Brown 1982). A survey on
recent literature on Weighted Maximum Clique algorithms
can be found in (Pullan 2008).

In the following we introduce our heuristic algorithm. We
describe it for weighted edges only. Its extension for deal-
ing with weights on both nodes and edges, as well as the
case where weights are averaged on the number of nodes, is
straightforward.

Given a set of residues R, in the previous section we de-
fined a learned symmetric similarity function F that maps
each pair of residues onto a measure of likelihood that
they belong to the same cluster. Given a positive threshold
value φ, we define a weighted undirected graph as a triplet
Gφ ≡ (R,Eφ, F ) where the vertex setR is composed by the
residues, the edge set Eφ is defined by vertex pairs whose
similarity function F is above the threshold φ

Eφ =
{
{u, v} ⊂ R : u 6= v ∧ F (u, v) ≥ φ

}
,

and the weight of every edge e ∈ Eφ is given by F (e). From
now on, subscript φ shall be removed for clarity.

A clique in graph G is defined as a completely connected
subgraph of G, i.e., any subset R′ ⊆ R such that for every
pair of nodes u, v ∈ R′ the pair {u, v} belongs to E. The
Edge-Weighted Maximum Clique Problem requires to find
the clique in R that maximizes the sum of weights:

R′max = arg max
R′⊆R

R′ clique in G

∑
u,v∈R′

F (u, v).

Input Meaning
R,E, FE Edge-weighted undirected graph

Variable Meaning
t Current iteration index
T Prohibition period
Lv Last iteration when v ∈ R was added/removed
R̄ Current configuration
P List of nodes that can be added to R̄
w Clique weight
v Chosen node
a Action to be taken (Add or Drop)

1 function WMC(R,E, FE)
2 Lv ← −∞ for v ∈ R
3 t← 0; R̄← ∅;P ← R;w ← 0
4 repeat
5 UPDATEPROHIBITION(R̄, T )
6 (v, a)← CHOOSENODE(L, R̄, P, T, t, E, FE)
7 if a = Add
8 R̄← R̄ ∪ {v}
9 else

10 R̄← R̄ \ {v}
11 recompute P and w incrementally
12 Lv ← t
13 if too many iterations without improvements
14 RESTART()
15 t← t+ 1
16 until termination condition is met
17 return best R̄ found

Figure 4: The main section of WMC: the local search step is
repeated and the best clique is returned (bookkeeping opera-
tions such as best configuration maintenance are not shown).

Being a generalization of the Maximum Clique Problem,
the edge-weighted version is also NP-hard. In this paper, we
introduce the Reactive Local Search optimization heuristic
for Weighted Maximum Clique finding (RLS-WMC, in the
following WMC for short), based on the RLS-MC heuristic
for Maximum Clique finding (Battiti and Protasi 2001), with
a novel dynamic behavior adapted from (Battiti and Mascia
2010).

The reaction technique of the WMC heuristic, described
below, offers an effective diversification mechanism that
provides a thorough exploration of the search space, and
is therefore capable of dealing with problem instances for
which exhaustive enumeration is infeasible.

The WMC heuristic, whose main section is shown in
Fig. 4, is a stochastic local search (SLS) algorithm. In SLS
algorithms for the MC problem, a “current” configuration
(subset of vertices) R̄ ⊆ R is maintained throughout the
search, being initially the empty set (line 4), and is modified
by incremental moves consisting in the addition or in the re-
moval of a node (lines 10–13). At every step the “current”
configuration is required to be a clique in the original graph
(the system generally moves only within feasible solutions),
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1 function CHOOSENODE(L, R̄, P, T, t, E, FE)

2 S ←
{
w ∈ P : Lw > t− T ∧

∧w maximizes future expectations

}
3 a← Add
4 if S = ∅
5 S ←

{
w ∈ R̄ : Li > t− T ∧

∧w maximizes future expectations

}
6 a← Drop
7 Pick v ∈ S
8 return (v, a)

Figure 5: The CHOOSENODE procedure: choose the non-
prohibited node having the best chance to lead to better
cliques in the future; if no nodes can be added, pick one
for removal.

therefore the addition move will only consider nodes that
maintain the clique property, i.e., that are connected to all
nodes in R̄. Such set of eligible nodes is called P in Fig. 4,
and is maintained incrementally during the search.

The WMC heuristic completes the generic SLS frame-
work by defining the criteria by which the incremental
moves are selected. In particular, a parameter T , called pro-
hibition period, is set and a vector (Lv)v∈R, storing the last
iteration at which node v was added or removed to the cur-
rent clique R̄, is initialized (line 3) and maintained (line 15).
Nodes that have been used in the last T iterations, called
prohibited, are not considered for addition or removal. This
mechanism, known as Tabu Search, prevents the system
from getting stuck in local optima and encourages diversi-
fication.

The move selection routine CHOOSENODE, whose pur-
pose is the choice of the next node to be added or removed,
is outlined in Fig. 5. Array (Lv) is used to check prohibi-
tions. Since more than one non-prohibited node is usually
eligible for addition to R̄, other selection criteria intervene
in order to maximize the chance that a large clique will be
obtained, for instance by choosing the node that maximizes
the average edge weight (line 2), with ties broken randomly
(line 7). If no nodes are eligible for insertion in the cur-
rent configuration R̄ (either because there are no more nodes
connected to all nodes in R̄, or all of them are prohibited),
then a non-prohibited node chosen within R̄ is selected for
removal (lines 4–6).

The value of the prohibition period T is critical for the
good behavior of the algorithm. Small values of T tend to
be insufficient for the system to efficiently escape local op-
tima, while high values highly reduce the flexibility of the
search procedure by reducing the number of eligible nodes.
Rather than relying on an ideal value of T as a function of
the graph size and of its density, WMC determines it dynam-
ically (line 8 of Fig 4) by calling a function, UPDATEPRO-
HIBITION, that detects anomalous situations where a change
would benefit the search. To achieve this, recent configura-
tions are stored in a hash table; if a configuration is visited
(i.e., becomes the current one) too often, then the T param-
eter is increased in order to improve the differentiation ca-

pabilities of the algorithm. If, on the other hand, no config-
uration is revisited for a given time, T is reduced. Further
details on the dynamic adaptation of T are available in (Bat-
titi and Mascia 2010).

Finally, a RESTART mechanism is provided (lines 16–17):
if the best solution is not improved in a while, then the al-
gorithm is restarted, so that new regions of the search space
are visited. The RLS-WMC algorithm maintains the weight
of the current configuration R̄ by incrementally updating it
at every move.

For the purposes of this paper, cliques within the ex-
pected size are stored along with their weight, and are post-
processed in order to determine which ones represent the
correct clusters. Bookkeeping operations such as the com-
putation of the clique weight, storage of the visited cliques
and of the best clique are not detailed here.

Experimental Results
Predicting Geometry of Metal Binding Sites
We tested our method on the task of predicting metal bind-
ing sites in metalloproteins. We used the same setting de-
scribed in (Frasconi and Passerini 2008), with 30 random
80/20 train/test splits. We encoded pairs of residues by con-
catenating their features vectors, thus comparing residues
according to their order in the sequence. This option was
shown (Frasconi and Passerini 2008) to provide better re-
sults with respect to alternative approaches such as averaged
pairwise comparisons, possibly because sequential ordering
is relevant in characterizing sites. Pairs were labeled posi-
tive if both residues bind to the same metal ion and negative
otherwise, and an SVM was used as the pairwise classifier.

All parameters concerning the SVM and the maximum
weighted clique algorithm described below were selected by
an inner-fold cross-validation on the training set of the first
split and kept fixed for all remaining folds. As a result of this
model selection phase, we employed a second degree poly-
nomial kernel and a cost factor j = 3 outweighing error on
positive with respect to negative examples. In building the
weighted graph, we discarded edges having weight smaller
than -0.9, and rescaled remaining weights to have positive
values. The weight of each clique was averaged over the
number of its nodes. The algorithm returned the set of non-
overlapping solutions with at most four residues. We made
no further selection of the returned solutions, except for lim-
iting the number of solutions to 4.

We present here a set of measures including those re-
ported in (Frasconi and Passerini 2008). Note that we are
not trying to predict the identity of an ion (e.g. the “first”
zinc, the “second” iron or so), but only the subset of residues
which jointly bind the same one. Thus, when evaluating
the quality of a certain clustering, we assign each ion to the
cluster containing the highest number of its true ligands (if
any). An equivalent approach was employed in (Frasconi
and Passerini 2008). PE , RE , and FE are the precision, re-
call, and F1 of the correct assignment between a ligand and
a metal ion. PS , RS , and FS are the precision, recall, and
F1 of the correct prediction of binding sites, i.e., how many
sites are entirely correctly predicted over the total number of
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sites in the chain. PB , RB , and FB are the precision, recall,
and F1 of the correct prediction of the bonding state of the
residues in the chain, i.e. regardless of which ion they actu-
ally bind. Tables 1 and 2 report the mean and standard de-
viation of these performance measures averaged over the 30
splits. The breakdown of these measures for proteins bind-
ing different numbers of metal ions (i.e. from 1 to 4) is also
reported.

# sites SVM + WMC (Frasconi and Passerini 2008)
PE RE FE PE RE FE

any 79± 3• 59± 5• 62± 5• 66± 5 52± 4 53± 4
1 84± 4 73± 7 73± 6 66± 7 58± 6 57± 6
2 70± 8 33± 5 42± 6 67± 7 44± 9 48± 9
3 70± 15 22± 8 32± 11 69± 19 24± 13 32± 12
4 42± 30 16± 13 23± 18 42± 31 20± 19 26± 22

PS RS FS PS RS FS
any 42± 7• 30± 7• 31± 7• 20± 7 17± 6 16± 6

1 50± 8 41± 9 41± 9 25± 10 22± 8 22± 8
2 25± 14 8± 7 11± 9 15± 9 7± 7 7± 7
3 23± 32 4± 7 5± 11 0± 2 0± 1 0± 2
4 9± 21 3± 6 5± 9 2± 7 1± 5 1± 5

PB RB FB PB RB FB
any 88± 3• 63± 5 67± 4• 79± 4 64± 6 64± 4

1 84± 4 73± 7 73± 6 74± 5 68± 7 65± 6
2 92± 8 45± 6 58± 7 88± 5 60± 11 66± 10
3 100± 0 34± 12 49± 15 98± 5 38± 22 50± 20
4 67± 45 25± 18 36± 25 65± 44 32± 28 40± 31

Table 1: Comparison on the metalloproteins dataset. The
means and standard deviations are computed on the 30 ran-
dom splits. A bullet indicates that the performance differ-
ences are statistically significant (p < 0.05).

# sites
any 1 2 3 4

SVM + WMC 27± 6• 40± 9 1± 4 0± 0 0± 0
(Frasconi and Passerini 2008) 14± 6 20± 8 3± 7 0± 0 0± 0

Table 2: Experimental results on the metalloproteins dataset.
AG is the accuracy at a chain level, i.e., the number of entire
configurations correctly predicted. A bullet indicates that
the performance differences are statistically significant (p <
0.05).

Our SVM+WMC approach achieves significant improve-
ments over the previous structured-output approach in edge,
site and bonding state prediction, as measured by paired
Wilcoxon tests (p < 0.05).

The most significative improvement over (Frasconi and
Passerini 2008) lies in the number of sites entirely correctly
predicted. The overall PS ,RS , and FS , is consistently better
for any number of metal ions in the protein.

Active Sites Prediction
We applied our approach to the prediction of active sites in
enzymes. We focused on the HA superfamily dataset (Chea
and Livesay 2007), the largest dataset employed as bench-
mark in the literature. Prediction of catalytic residues was
previously addressed starting from either sequence or struc-
tural information. We considered both settings, relying on
previous state-of-the-art results by a simple support vector
machine exploiting residue structural neighborhood (Cilia
and Passerini 2010). The detailed description of the features

employed for both sequence-based and structure-based pre-
dictions can be found in this previous work. Given that most
proteins contain a single active site, and the labeling found
in the CSA (Porter, Bartlett, and Thornton 2004) does not in-
clude information on different sites, we considered a single
site prediction setting. Common examples of multiple active
sites are those of polymeric proteins in which a pair of spec-
ular sites is found at the interface of two identical chains.
We plan to extract this additional information from known
3D structures in order to fully characterize overall geometry
in an extended version of the work.

For sequence-based prediction, we employed a setting
analogous to the metal binding site case, with pairs of
residues represented as ordered pairs of feature vectors
from (Cilia and Passerini 2010). Following (Cilia and
Passerini 2010), we employed a linear kernel and a 6 to 1
subsampling of negative (i.e. non-catalytic) residues, result-
ing in a 61/1 proportion of negative vs positive residue pairs.
Following the site size distribution in training instances, we
fixed the maximum size of cliques to six.

For structure-based prediction, we took a slightly differ-
ent approach, since we could also exploit the spatial infor-
mation provided by the protein structure. We modified the
maximum-weight clique algorithm in order to consider both
edge and node weights. Edge weights were in this case in-
verse Euclidean distances between corresponding residues,
pruned for distances over 14 Å. This threshold was chosen
according to the distribution of distances between catalytic
residues in the training set. The idea of constraining can-
didate solutions based on their pairwise 3D distances was
actually used in the MBG prediction approach by Babor et
al. (Babor et al. 2008) as an initial filtering stage. However
the 3D constraint is much less stringent in catalytic sites,
as shown by the quite large threshold (14 Å) we derived
from data. Node weights encoded catalytic propensity as
predicted by the state-of-the-art support vector machine pre-
dictor described in (Cilia and Passerini 2010). Node and
edge weights were normalized in order to fall within the
same range of values.

Experimental comparisons with the local approach
in (Cilia and Passerini 2010) are shown in Table 3, where
the protein-level precision, recall and F1 measures averaged
across folds are reported.

(Cilia and Passerini 2010) SVM+WMC
P R F1 P R F1

seq 20± 4 59± 7 25± 4 22± 2 41± 4 27± 3 •
struct 23± 3 65± 6 28± 3 35± 7 43± 7 34± 6 •

Table 3: Comparison of the results (performance ± st.d.)
obtained in active site prediction. A bullet indicates that
the performance differences are statistically significant (p <
0.05).

The SVM+WMC approach achieves significant improve-
ments at p < 0.05 in both sequence-based and structure-
based predictions according to a paired Wilcoxon test. Note
that the average protein-level F1 of the local predictor is
quite lower than the F1 computed from average protein-level
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precision and recall. This happens because the local SVM
produces rather unbalanced predictions, either maximizing
recall with low precision or (more rarely) vice versa, and for
a number of proteins it outputs completely wrong predic-
tions. The SVM+WMC approach is much more stable and
balanced in its predictions. Note also that the improvement
in F1 is not simply due to a better choice of the decision
threshold with respect to the standard local approach. The
best F1 value which could be obtained with local sequence-
based predictions by optimizing the threshold (on the test
set) is just 0.256. Results from the structured-based predic-
tion significantly improve the current state-of-the-art thanks
to an effective use of the spatial geometry information. In
particular, the algorithm finds cliques that discard many of
the classifier false positives.

Discussion
We address the problem of predicting geometry of structural
and functional sites in proteins by casting it into a super-
vised clustering task. We propose a novel distance-based
supervised clustering approach in which the learned pair-
wise distance is employed to turn instances into weighted
graphs. A maximum-weight clique algorithm is executed on
the graph to return a small set of densely connected compo-
nents corresponding to candidate sites. Supervised cluster-
ing is an active area of research and a number of different ap-
proaches have been proposed in the literature (Basu 2005).
We use a very simple distance learning approach based on
pairwise classification of instances. The maximum-weight
clique clustering algorithm is however independent of this
stage, and can be easily integrated in more complex super-
vised clustering approaches such as the structured-output
formulation proposed in (Finley and Joachims 2005).

The algorithm substantially improves over the only exist-
ing approach in predicting geometry of metal binding sites
from sequence alone. Focusing on small components with
large overall weights, our algorithm is more robust to a pos-
sibly incorrect bonding state prediction. On the other hand,
the structured-output approach in (Frasconi and Passerini
2008) is capable of exploiting the full relational structure
of partial solutions in order to evaluate them, instead of be-
ing limited to networks of pairwise interactions. Indeed,
such approach is superior when bonding state information
is assumed to be known. We are planning to extend our
algorithm in order to deal with clique-based weights, thus
combining some of the advantages of the two formulations:
the ability of a structured-output approach to better model
the quality of candidate solutions, and the robustness of
stochastic local search strategies in dealing with a scoring
function which only approximates conditions guaranteeing
greedy optimality (Frasconi and Passerini 2008).

Significant improvements over the state-of-the-art are also
obtained in predicting active sites from 3D structure. The al-
gorithm naturally handles the lack of knowledge in the num-
ber of clusters, partial clusterings with many outliers and
overlapping clusters. We are planning to extend it to return
a structured set of solutions, such as metal binding sites as
parts of wider active sites, a quite common situation in en-
zymes.
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