
Prioritization of Domain-Specific Web Information Extraction

Jian Huang
Information Sciences and Technology

Pennsylvania State University
University Park, PA 16802, USA

Cong Yu
Yahoo! Research

New York, NY, USA

Abstract

It is often desirable to extract structured information
from raw web pages for better information browsing,
query answering, and pattern mining. Many such
Information Extraction (IE) technologies are costly and
applying them at the web-scale is impractical. In
this paper, we propose a novel prioritization approach
where candidate pages from the corpus are ordered
according to their expected contribution to the extrac-
tion results and those with higher estimated potential
are extracted earlier. Systems employing this approach
can stop the extraction process at any time when the
resource gets scarce (i.e., not all pages in the corpus
can be processed), without worrying about wasting
extraction effort on unimportant pages. More specif-
ically, we define a novel notion to measure the value
of extraction results and design various mechanisms for
estimating a candidate page’s contribution to this value.
We further design and build the EXTRACTION PRI-
ORITIZATION (EP) system with efficient scoring and
scheduling algorithms, and experimentally demonstrate
that EP significantly outperforms the naive approach
and is more flexible than the classifier approach.

Introduction
A repository of structured information has many advantages
over a collection of raw web pages. It allows users to issue
queries with complex conditions (such as joins) and get
direct answers (instead of pointers), as well as analyze the
information for complex patterns. Although there are efforts
in creating structured information from scratch through
Wiki-style collaboration (Bollacker et al. 2008), the vast
majority of information is still embedded within raw web
pages. Hence, information extraction remains one of the
most important and practical methods to obtain structured
information on the Web.

However, extracting information from raw web pages is
expensive: a page needs to be tokenized, tagged, matched
against a non-trivial number of patterns and/or subject to in-
ferencing through various machine learning models. Given
the tremendous scale of the Web (tens of billions of pages
nowadays), the full extraction approach, i.e., performing ex-
traction on every single page, is prohibitively expensive and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Web Pages:
P1: joeshanghairestaurants.com/location.htm
P2: schmap.com/newyork/restaurants french

P3: yelp.com/c/nyc/french
P4: yelp.com/nyc/fastfood

Queries:
Q1: joe’s shanghai restaurant

Q2: joe’s shanghai manhattan

Q3: french restaurants new york

Q4: chinese restaurants manhattan

Figure 1: An example of a simple extraction scenario in the
restaurant domain.

is limited to simple and light-weight extraction technologies
only, such as Open-IE (Banko et al. 2007). As a result,
many extraction systems are domain-specific, i.e., they build
filters (essentially classifiers) to separate relevant web pages
from irrelevant ones, and extract from the relevant ones
only. This classifier approach works effectively for certain
domains where relevant pages are concentrated and easy
to determine (e.g., professional sports teams). However, it
faces a difficult decision in many domains where good filters
can not be easily designed (e.g., restaurant home pages):
either making the filters restrictive at the expense of missing
good results or making them loose and suffer a much higher
computation cost for extraction. In this paper, we propose
a novel prioritization approach that ranks each page instead
of simply classifying them as relevant or not. Specifically, it
identifies pages that are likely to yield the most value to the
extraction results based on various factors, and prioritizes
extraction on those pages within the resource constraints.

The main challenge of the prioritization approach is
deciding which pages are more valuable than others and
estimating those values. Consider the simple example

1327

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

extraction scenario in Figure 1 in the restaurant domain. On
the top are the web pages in the corpus and the set of queries
posed by the users. On the bottom is the set of entities that
can be extracted from the web pages: P1 contains E1 and
E2 while E3 is contained within both P2 and P3. Intuitively,
the value of a page with regard to the extraction task can be
measured by several major factors. The first well-recognized
factor is relevance: a page is only valuable if it contains
information that is relevant to the domain of interest.

Relevance, however, fails to account for the impact of one
particularly important external factor, search demand. For
example, the restaurant “Joe’s Shanghai” is more frequently
requested by users than others (e.g., fast-food restaurants).
Considering relevance only, a system that extracts many
fast-food restaurants will be considered better than another
system that only extracts the restaurant “Joe’s Shanghai.”
However, to the users of this query workload, the latter is
much more useful as the results it extracts can satisfy more
of their needs. This observation leads us to the importance
factor: a page is more valuable if it contains information that
is needed by more users.

Furthermore, no extraction system can perfectly extract
information from all the pages it processes. For example,
it is possible that the web site schmap.com uses a lot of
graphic content to convey its information, making it difficult
to extract. So even if P2 contains important information
(e.g., French restaurants), it is a waste of effort to extract
from P2. We note this as the extractibility factor: a page is
only valuable if the information it contains can be extracted
by the underlying extraction system.

Finally, for web-scale extraction, a single piece of infor-
mation is often extracted redundantly from multiple pages.
For example, E3 can be extracted from both P2 and P3.
Since redundant information is often wasteful (unless it
helps to substantiate the correctness of the information
already extracted), the last major factor, novelty, dictates
that a page is more valuable if it contains more information
that has not yet been extracted.

We formalize the notion of page value based on these
main factors and describe how to estimate it effectively and
efficiently. We design and implement a prototype system,
called EP, capable of prioritizing pages for extraction based
on the page value. We define the extraction prioritization
problem as: given a corpus of candidates pages, determine
the order by which those pages are to be extracted, at a
reasonable additional overhead to the actual extraction, such
that the value of the extraction results is maximized after
each extraction iteration.

We make the following main contributions. First, we
introduce a novel metric for the extraction results, Consen-
sus Graph Value, which takes into account both relevance
and importance of each extracted entity and relationship.
Second, we formally define the notion of Page Utility for
measuring a page’s potential contribution to the extraction
results and discuss how it can be estimated. Third, we design
and build the EP system with efficient algorithms for scoring
and scheduling candidate pages for extraction. Finally, we
perform a comprehensive experimental evaluation of our
approach using a real web data set.

The Value of Extraction Results

Consensus Graph is our logical data model for the ex-
tracted artifacts, i.e., entities and relationships, such as
restaurants and addresses. Formally, we have:

Definition 1 (Consensus Graph) A Consensus Graph
(CG) is a 3-tuple, CG = (E, A, R), where

• E is the set of typed entities, each entity e ∈ E has
a unique id within the CG and can be associated with
multiple types.

• A is the set of atomic values of simple types like String or
Float.

• R = E × (E
⋃

A) × String is the set of labeled typed
relationships. A relationship with label L (of simple type
String), which involves one entity e1 and atomic value a or
another entity e2, can be written as e1.L = a or L(e1, e2)
respectively.

For simplicity, the CG can be considered as a set of
extracted semantic entities. When it’s clear from the context,
we simply write CG = {ei}

M
i=1 (ei ∈ E and M = |E|).

Each entity ei can be involved in J semantic relationships,
ei = {r(i,1), ..., r(i,J)} (r(i,j) ∈ R), and each relationship

can have K values, i.e., r(i,j) = {r1(i,j), ..., r
K
(i,j)}, where

each rk(i,j) is an atomic value or a pointer to another entity.

We note here that our CG model is similar to the W3C RDF
model (Manola and Miller 2004).

Consensus Graph Value

We design a comprehensive metric, Consensus Graph Value,
that takes into account the search demand in measuring the
value of extraction results. As shown in Figure 1, the CG
value is higher if the extracted entities and relationships
satisfy more user queries. At the core of this metric is
the coverage semantics, i.e., what it means for an entity to
satisfy a query. Given a structured information repository,
users typically issue two major types of queries: instance
queries, which look for specific entities or relationships, and
category queries, which look for a large group of entities
and relationships satisfying certain conditions. In Figure 1,
Q1 and Q2 are instance queries, whereas Q3 and Q4 are
category queries. For instance queries, there are typically
few matching results, and all of the results are considered
equally important. On the other hand, there are often many
results satisfying category queries, and each additional result
becomes less important as the user already has plenty of
results to choose from. We define the value of Consensus
Graph based on these intuitions next.

The value of an extraction result CG with respect to a
query workload QW 1 is formally defined as the summation
of the value of CG for each query q in QW :

VQW
CG =

∑

q∈QW

V(CG, q) =
∑

q∈QW

nq
∑

i=1

αpiV(ei, q) (1)

1A query workload is the set of past queries taken within a time
range. As topics shift over time, recency plays an important role in
the predictiveness of a query workload for future queries.

1328

where α > 1, pi =

{

0 : q is an instance query
1− i : q is a category query

and ∃j, k s.t. r(i,j) or rk(i,j) matches q

where nq is the number of entities ei matching the q: ei

matches q when some relation of ei (r(i,j)) has a label or

contains a value (rk(i,j)) that matches some keywords in the

query. Moreover, when q is a category query, we rank all
entities that match q according to their values (defined next)
and gradually reduce the value of each additional entity from
top down. This models the fact that many low-ranked results
for category queries are not that useful to the user. The
parameter α determines how fast the value decays for each
additional entity. Note that the query workload contains
duplicate query terms (e.g. the same query terms may appear
multiple times). Hence, the CG value implicitly captures the
frequency of different query terms.

For each entity ei in the CG with the given query q, its
value is formally defined as:

V(ei, q) =

J
∑

j=1

DG(r(i,j), q) (2)

DG(r(i,j), q) =

K
∑

k=1

β1−kc, rk(i,j) /∈ q (3)

Intuitively, Equation 2 illustrates that the value of a
matching entity ei is the summation of the diminishing gains
of all of its relationships. Equation 3 describes how the
diminishing gain of each relationship is calculated. First of
all, a relationship is only counted if its extracted value does
not already appear in the query: returning the user some
information s/he already knows is not useful. Also, each
additional extracted value for the same relationship yields
diminishing value (the rate of diminishment is determined
by β). Finally, the constant c determines how much value
we assign to each piece of extracted value. Because only the
relative values are important, we can set c to 1.

Using diminishing gain in Equation 3 is desirable for
two reasons. First, during the extraction process, each
relationship can often have multiple extracted values (e.g.,
cuisine=“Chinese, Thai, Japanese”) and each additional
information normally brings less value to the entity (and
hence to the CG) than its predecessors. Second, even
state-of-art information integration and reconciliation mech-
anisms are often imperfect, and as a result near-duplicate
information often permeates the extracted results. Using di-
minishing gain for each relationship allows us to mitigate the
impact of those redundant information on the CG value, and
to redirect extraction efforts toward extracting information
that has not been seen before.

Finally, we point out that the CG value we have defined is
essentially a generalized coverage measure: it goes beyond
incorporating the absolute number of extracted entities and
relationships by considering the importance of individual
pieces of information based on how often they are requested
by the users.

Page Utility Estimation

CG value is defined in terms of the extraction results and
thus is only computable after the extraction. To identify
which pages to prioritize the extraction effort, we discuss
how to estimate the potential value of a candidate page with
page utility in this section.

Page Utility

The page utility U(p) of a candidate page p is defined as:

U(p) = E[V(CG+ext(p))] · Pr(p)

+VCG · (1− Pr(p))− VCG

= Pr(p) · (E[V(CG+ext(p))]− VCG) (4)

where Pr(p) is the probability of p being extracted and
ext(p) is the entities and relationships that can be extracted
from p. Intuitively, if page p is accepted for extraction and
the extraction is successful, the value of the new consensus
graph CG + ext(p) (i.e., the current CG integrated with
the entities and relationships from p) becomes V(CG+ext(p)),

otherwise the CG value remains the same. Note that Pr(p)
is Bernoulli-distributed, and the outcome of this event is
revealed after the extraction. Also, in Eq.(4) the query
workload is fixed in the prioritization and is omitted for
notational convenience. Prior to the extraction, we aim
to select the page for extraction with the highest expected
page utility, which boils down to estimating the extraction
probability Pr(p) and the new CG value E[V(CG+ext(p))].

Estimating Extraction Probability Intuitively, the prob-
ability Pr(p) is affected by two factors, relevance and
extractibility. If the page p is irrelevant to the domain, the
system will reject it for extraction. The system may also fail
to extract from p due to various other reasons (e.g., graphical
contents on the pages). Hence the probability of p being
extracted is a joint probability of p being both relevant to the
domain and extractable by the underlying extraction system:

Pr(p) = Pr(p is relevant) · Pr(p is extracted|p is relevant)

The first term can be estimated by a lightweight page
classifier, which only considers the metadata of the page
(e.g., URL). The second term reflects the recall of the IE
system and can be estimated based on prior knowledge. If
we are agnostic about the performance of the IE system a
priori, we can assume that the probability of successfully
extracting a relevant page is largely related to the hosting
domain of the page (as pages in the same domain share
similar structural characteristics), and therefore estimate the
probability in an online manner by examining the success
rate on recently processed pages. Alternatively, as part
of our future work, Pr(p) can be estimated in a more
sophisticated way by regression based on features such as
the DOM structure and lexical information of the page.

Estimating the New CG Value Let Ep = {ek} be the set
of entities extracted from page p. Formally, the expected CG
value after integrating p can be computed as:

E[V(CG+ext(p))] = VCG +
∑

ek∈ext(p)

E[V [ek|CG]] (5)

1329

where V [ek|CG] denotes the increment in CG value when
the entity ek is integrated to the current CG. Here, we
assume that entities extracted from the same page are de-
duplicated by the underlying extraction system and thus
their additions to the CG are independent. We consider the
probabilistic events of whether the entity ek exists in the CG:

E[V(CG+ext(p))]− VCG

=
∑

ek∈ext(p)

[Pr(ek ∈ CG) · (E[VCG∪{ek}]− VCG)

+ (1 − Pr(ek ∈ CG)) ·E[V{ek}]] (6)

Intuitively, if ek has not been extracted before, the in-
crease in CG value is solely based on ek regardless of the
current CG. Alternatively, if ek is already in the current CG,
it should be consolidated with the existing entity and only
novel information can contribute to the CG value increase.

For the former case (i.e., Pr(ek ∈ CG) = 0), we have:

(6) =
∑

ek∈ext(p)

E[V{ek}] =
∑

ek∈ext(p)

∑

q∈QW

E[V({ek}, q)]

Therefore,

U(p) = Pr(p) ·
∑

ek∈ext(p)

E[V({ek}, QW)] (7)

In words, U(p) equals the product of its extraction prob-
ability and the sum of importance of the entities that can
be extracted from p. As aforementioned, importance is
measured according to the entity’s prevalence in the query
workload.

For the case where ek may not be novel, we need to
estimate Pr(ek ∈ CG) and E[VCG∪{ek}] − VCG. The
former characterizes the probabilistic event whether ek ap-
pears in the current CG. This can be efficiently estimated
by interpreting the similarity between two entities as the
desired probability (e.g. the similarity of the name of a
restaurant appearing on a candidate page and those already
in the CG). To estimate the latter, by substituting p with
ek and ek with r(k,j), we can further drill down to the
expected increase in the utility of an existing entity ek by
incorporating relationships in a similar form as in Equation
(6). The details of these are omitted due to space limitation.

Page Scoring

Estimating a page’s utility involves discovering the set of
entities on the page and computing their expected values
as in Equation (6). These tasks are accomplished by
performing highly lightweight extraction on the page (see
next section) to obtain an approximation of the set of
extractable entities. To illustrate, consider E[V{ek}] and
only instance queries. Referring to Eq.(1), we have:

E[V{ek}] = E[
∑

q∈QW

I[ek matches q] · V(ek, q)] (8)

Further assuming that V(ek, q) is constant for all k:

E[V{ek}] ∝ E[
∑

q∈QW

I[ek matches q]] (9)

which is the expected query coverage of the entity. Hence
the system can use the query coverage (substituting the
expectation) to compute the entity’s utility.

Implementation

The extraction prioritization (EP) process is accomplished
in batches. In each batch, a set of pages are sampled
from the corpus and scored. The ones with the highest
estimated utility are extracted immediately (i.e. prioritized)
and the rest is either queued in the working set or discarded
if their utility is too low. After the extraction completes,
EP obtains the updated CG from the extraction system and
incrementally updates the utilities of pages remaining in
the working set, before moving on to the next batch. We
note that, at one extreme, each page can be considered as
an individual batch, in which case the system becomes the
random sampling strategy. At the other extreme, the whole
corpus can be considered as a single batch. This, however,
means that before the first page can even be extracted, EP
will have to analyze and score all the pages in the corpus —
a delay that is often too costly. Here, we briefly describe the
scheduling process and the page scoring operations.

Scheduling: Algorithm 1 illustrates the scheduling pro-
cedure. The core data structure is the working set W ,
implemented as a priority queue. In each batch, a set of s
pages is randomly sampled and removed from the corpusP .
For each sampled page, its expected utility is estimated as
we will describe next. Those pages with expected utility
greater than a threshold δ (line 7) are inserted into the
working set and the top b pages are selected for extraction.
Finally, the expected utilities of the top k pages in W are
incrementally updated (line 13) according to the updated
CG. We only update the estimated utilities of top remaining
pages as the working set can become quite large and hence
costly to re-estimate all pages.

Algorithm 1 EP scheduling procedure

Require: P : a corpus of pages
1: W ← φ
2: while P 6= φ || W 6= φ do
3: R← Random Sample(P , s) // s: sample size
4: P ← P −R
5: for p ∈ R do
6: u← Utility(p)
7: if u > δ then
8: W .insertWithPriority(p, u)
9: end if

10: end for
11: CG ← IE.extract(W .removeTopN(b)) // b: batch size
12: for p ∈ W .getTopN(k) do
13: update utility of p w.r.t. CG // k ≥ b
14: end for
15: end while

Page Utility Estimation: Algorithm 2 shows the
algorithmic steps of the page scorer, which accomplishes
lightweight extraction and utility estimation. A given page p
is first segmented into a set of sections C such as the page’s
hosting domain, URL, title, keywords, header, body, footer,
etc. The sections are then cleaned up and tokenized (e.g. the
domain name www.timberlodgesteakhouse.com

becomes ‘Timber Lodge Steakhouse’). Lightweight

1330

extraction is then performed on the token sets T . Evidently,
the speed of lightweight extractors is crucial. We use
rule-based extractors and base noun phrase (BNP) chunkers
for this purpose. Line 5-9 estimates each potential entities’
value u. Finally, p’s utility is computed by combining u and
page extraction probability r using Equation (7).

Algorithm 2 Generic page scorer Utility (p)

Require: p: a page, QW : prioritization query workload
Ensure: u: estimated page utility

1: S ← Segment(p)
2: T ← Tokenize(S)
3: E ← LightWeightExtract(T)
4: v ← 0
5: for ek ∈ E do
6: for q ∈ QW do
7: v ← v + Similarity(ek, q)
8: end for
9: end for

10: Estimate page extraction probability r
11: Compute utility u as in Equation (7)

Experiments

We built the EP system in Java and conducted a compre-
hensive set of experiments in the restaurant domain using
real world data. All experiments were conducted on a Linux
machine with a Intel Core2 CPU and 4GB memory. We
choose to focus our evaluation on the restaurant domain, for
which logs of real user queries on restaurants are available
to us from Yahoo! Local.

Corpus: We randomly sampled 100,000 web pages from
the crawl of a major search engine (search.yahoo.com) and
named this corpus web. A very small portion of those
pages are expected to be related to restaurants. In practice,
preprocessing techniques like focused crawling will likely
lead to a corpus with a higher concentration of restaurant
pages. As a result, we further randomly sampled 10,000
pages, whose URL domains matched those covered by a
comprehensive set of restaurant domains in Yahoo! Local.
We named this corpus core. To simulate the focused
crawling effect, we combined the web corpus with the core
corpus to generate the focus corpus with 110,000 pages.

Query Workload: We randomly sampled 150,000
queries from the log of the restaurant search engine 2 during
the month of May 2009. We further randomly sampled
50,000 restaurant queries from the month of June 2009. The
former is used as the prioritization workload and the latter
as the evaluation workload in our experiments.

Restaurant Information Extraction: To extract restau-
rant information from a page, we leverage an extraction
system (Bohannon et al. 2009) that includes a rule-based
extractor for contact information extraction and an SVM-
based extractor for cuisine type extraction.

2Yahoo! Local has a sophisticated way of determining which
queries belong to the restaurant category with over 95% accuracy
based on examining a 200-query random sample.

Page Scoring Strategies: We experiment with different
page scoring strategies in prioritization: metadata-only,
content-only and combined. The metadata-only scorer an-
alyzes the page metadata that are available in the crawl
(e.g. URL tokenized into words, title, page size, etc.).
The content-only scorer analyzes easily accessible portions
of the page content (e.g., header and footer) for scoring.
The combined scorer simply uses an equal-weighted sum of
both scores. We compare those strategies to random, which
randomly selects pages at each iteration.

Effectiveness of Extraction Prioritization

We first examine the effectiveness of different EP strategies.
The effectiveness is measured by the resulting CG value
after extracting a certain number of pages. (In this section,
all experiments are done with the batch size 100 for focus
corpus and 20 for core corpus.)

Figure 2 shows that all three EP strategies far outperform
random on the focus corpus. After extracting 10, 000 pages
(9% of all pages) from the focus corpus, the EP strategies
have achieved a CG Value of 5700, covering 85% of the total
CG Value of 6770 (calculated from the core corpus as the
number of restaurant pages in the web corpus is negligible).
In contrast, the random strategy can only achieve a CG
value of 1047 after extracting 10, 000 pages, wasting a lot
of resources on the irrelevant pages. As expected, the CG
value achieved by random grows almost linearly to the
number of pages extracted. For EP strategies, there are
roughly three stages. In the fast growth stage (the first 2000
pages extracted), the system identifies the most important
pages. In the slow growth stage (roughly from 2000 to
7000 pages), the most important pages are exhausted and
the system starts to extract less important but still valuable
pages. Finally, in the random stage (the rest of the pages,
not shown after 10, 000), useful pages have been exhausted
and prioritization no longer has advantages over random.

We further examine the effectiveness of EP strategies on
the restaurant-concentrated (and thus random-friendly) core
corpus. As shown in Figure 3 (left), all EP strategies still
significantly outperform random. This is especially evident
for the fast growth stage (Figure 3 (right)). After high
priority pages are extracted, EP strategies start to slow down
until they reach the same CG value as random when all
pages are extracted. We also compare the number of pages
the EP strategies and the random strategy need to extract to
reach the same CG value. As shown in Figure 4, to reach
60% of the total CG value, the EP strategies often only need

Figure 2: Comparison of Extraction Prioritization strategies
on the corpus “focus”.

1331

Figure 3: (Left) Comparison of prioritization strategies on the corpus “core” (Right) Results on first 2k pages.

Figure 4: Percentage of pages used by different methods to
reach the same CG value as random on the corpus “core”.

to extract about half of the pages needed by the random,
which is a significant improvement.

These experiments clearly demonstrate that prioritizing
the extraction on pages with highest utilities achieves better
extraction results faster. As the sheer size of the web and
its evolution outpace state-of-the-art extraction methods,
EP can have a significant impact in resource conservation.
We perform some detailed analysis on EP further. All
experiments use the combined strategy and the core corpus
(if not otherwise specified).

Overhead of Prioritization: We weigh the benefit of
prioritization against its overhead and show the results in
Table 1. Even on the highly concentrated core corpus, EP
strategies cost only 15% more running time, while achieving
over 60% more value. The trade-off is even more impressive
when prioritizing for the less concentrated focus corpus:
over an order of magnitude more value in the extraction
results with running time overhead of less than 35%.

Impact of Batch Size: Batch size determines the number
of pages to extract at each iteration (b in Algorithm 1).

core Time (secs) CG Value

random 385 1178
combine 437 (+13.5%) 1964 (+66.7%)

focus Time (secs) CG Value

random 2336 80.64
combine 3122 (+33.65%) 1887 (+2258%)

Table 1: Overhead and benefit of prioritization on extracting
10% of the total pages (1, 000 for core and 10k for focus).

Figure 5: Impact of batch size on Extraction Prioritization
on the corpus “core”.

Figure 5 shows that the smaller the batch size, the more
effective prioritization is, as a small batch size allows the
extraction system to focus on the most valuable pages first.

Impact of Query Workload Size: Figure 6 shows that
the prioritization strategy is relatively robust against the size
of the query workload. A large query workload (150K
queries) is slightly more effective than a smaller one (50K),
and both significantly outperform the random strategy.

Figure 6: Impact of query workload size.

Comparison with Classifier Approach

The page utility estimation can be used by the so-called
classier approach for filtering instead of prioritization. To
compare these two approaches, we build two classifiers
based on the combined scorer. The first one retains only
pages with estimated utility greater than 0.8 for extraction,
while the second one retains pages with utility higher than
0.2. We compare the prioritization strategy against both
and the result is shown in Figure 7. Not surprisingly,
the more selective classifier is slightly more effective than
the prioritization approach in the initial stage, but it stops
extracting pages after about 4, 000 pages, leaving a mere
55% coverage of the total CG value, compared with an

1332

Figure 7: Comparing Extraction Prioritization with classifier
approach on the corpus “focus”.

85% coverage for the prioritization approach. Contrar-
ily, the less selective classifier significantly under-performs
the prioritization approach and more closely resembles the
random strategy. In general, the classifier approach will
struggle to find a good threshold to achieve the optimal
balance between better overall coverage and better initial
results. The prioritization approach addresses this problem
by eliminating the need to define a single threshold (and
make only binary decisions) on whether pages should be
extracted or not — instead, pages compete with each other
for the extraction slots and the more useful a page is, the
earlier it will be selected for extraction.

Related and Future Works

Prioritization has spawned significant research interests re-
cently in many research areas. In AI and data integration,
(Jeffery, Franklin, and Halevy 2008) adopted a decision-
theoretic approach to order candidate entity matches for
user confirmation. The ordering is guided by the value of
perfect information (VPI) (Russell and Norvig 1995), which
is estimated from the query workload. The page utility in
this paper also adopts the VPI technique to estimate the true
value of the unknown. Besides the different goals (theirs for
reconciliation and ours for extraction), our EP system has to
handle the novelty factor — prioritization needs to be aware
of the extraction results after each iteration. In search engine
crawling, (Pandey and Olston 2008) proposed to prioritize
the crawling of web pages according to the page impact,
defined as the number of times the page appears in top search
results. In information extraction, (Agichtein and Gravano
2003; Ipeirotis et al. 2006) introduced an iterative approach
to identify useful pages for extraction. It starts with a small
seed set of documents and gradually constructs keyword
queries from the extracted pages, to fetch additional pages
with similar content by a search engine. Unlike EP, it
relies on the quality of the initial seed set and the external
search engines to achieve good results, without considering
the impact of user search demands.

There are several future directions to explore. First,
social tagging (e.g. Digg) is an important form of explicit
user endorsement and can be adopted as an alternative way
of estimating page importance. Second, the value of the
extracted entities and relationships are also influenced by
their corroborative-ness: i.e., whether they can influence
the scores of some already extracted information toward

their true values. This is especially important since most
extraction systems produce information that is uncertain and
often conflicting. A formal model of the tradeoff between
redundancy and novelty is an important future direction.

Conclusion

A vast amount of knowledge is hidden behind raw pages
on the Web. Information extraction techniques transform
them into structured information that facilitates human in-
formation consumption and data mining. The sheer size and
the fast growth of the Web, however, are overwhelming the
state-of-the-art IE techniques. We proposed an automatic
technique, Extraction Prioritization, for obtaining the most
valuable extraction results as early as possible in the extrac-
tion process. We formally defined a metric for measuring the
quality of extraction results, which is suitable for the web
retrieval context. We further developed statistical methods
to efficiently estimate the page utilities without launching
full-scale extractions. We implemented the EP system and
validated its significant benefits in a large web data set over
alternative strategies.

Acknowledgments

This work was done while Jian Huang was visiting Yahoo!
Research, New York. The authors would like to thank
Philip Bohannon, Raghu Ramakrishnan and the anonymous
reviewers for their helpful comments and suggestions.

References

Agichtein, E., and Gravano, L. 2003. Querying text
databases for efficient information extraction. In ICDE.

Banko, M.; Cafarella, M. J.; Soderland, S.; Broadhead, M.;
and Etzioni, O. 2007. Open information extraction from the
web. In Proceedings of IJCAI, 2670–2676.

Bohannon, P.; Merugu, S.; Yu, C.; Agarwal, V.; DeRose,
P.; Iyer, A.; Jain, A.; Kakade, V.; Muralidharan, M.;
Ramakrishnan, R.; and Shen, W. 2009. Purple SOX
extraction management system. ACM SIGMOD Record
37(4):21–27.

Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD, 1247–1250.

Ipeirotis, P. G.; Agichtein, E.; Jain, P.; and Gravano, L.
2006. To search or to crawl?: towards a query optimizer for
text-centric tasks. In Proceedings of SIGMOD, 265–276.

Jeffery, S. R.; Franklin, M. J.; and Halevy, A. Y. 2008. Pay-
as-you-go user feedback for dataspace systems. In Proc. of
International Conf. on Management of Data (SIGMOD).

Manola, F., and Miller, E. 2004. RDF Primer W3C
Recommendation.

Pandey, S., and Olston, C. 2008. Crawl ordering by search
impact. In Proceedings of the international conference on
Web search and web data mining (WSDM), 3–14.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall.

1333

