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Abstract

We address the problem of predicting the expected opinion
share over a social network at a target time from the opin-
ion diffusion data under the value-weighted voter model with
multiple opinions. The value update algorithm ensures that it
converges to a correct solution and the share prediction results
outperform a simple linear extrapolation approximation when
the available data is limited. We further show in an extreme
case of complete network that the opinion with the highest
value eventually takes over, and the expected share predic-
tion problem with uniform opinion value is not well-defined
and any opinion can win.

Introduction

Blogosphere and sites such as for social networking,
knowledge-sharing and media-sharing in the World Wide
Web have enabled to form various kinds of large social
networks, through which behaviors, ideas and opinions
can spread. Thus, substantial attention has been directed
to investigating the spread of influence in these networks
(Leskovec, Adamic, and Huberman 2007; Crandall et al.
2008; Wu and Huberman 2008).

The representative problem is the influence maximization
problem, that is, the problem of finding a limited num-
ber of influential nodes that are effective for the spread
of information through the network and new algorithmic
approaches have been proposed under different model as-
sumptions, e.g., descriptive probabilistic interaction models
(Domingos and Richardson 2001; Richardson and Domin-
gos 2002), and basic diffusion models such as independent
cascade (IC) model and the linear threshold (LT) model
(Kempe, Kleinberg, and Tardos 2003; Kimura et al. 2010;
Chen, Wang, and Yang 2009). This problem has good ap-
plications in sociology and “viral marketing” (Agarwal and
Liu 2008). The models used above allow a node in the net-
work to take only one of the two states, i.e., either active or
inactive, because the focus is on influence.

However, application such as an on-line competitive
service in which a user can choose one from multiple
choices/decisions requires a model that handles multiple
states. Further, it is important to consider the value of each
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choice, e.g., quality, brand, authority, etc. because this im-
pacts other’s choice. We formulate this problem as a value-
weighted K opinion diffusion problem and provides a way
to accurately predict the expected share of the opinions at a
future target time T (before an consensus is reached) from a
limited amount of observed data.

A good model for opinion dynamics would be a voter
model. It is one of the most basic stochastic process model,
and has the same key property with the linear threshold (LT)
model that a node decision is influenced by its neighbor’s
decision, i.e., a person changes its opinion by the opinions
of its neighbors. In the basic voter model which is defined
on an undirected network, each node initially holds one of
K opinions, and adopts the opinion of a randomly chosen
neighbor at each subsequent discrete time-step.

There has been a variety of work on the voter model. Dy-
namical properties of the basic model, including how the de-
gree distribution and the network size affect the mean time
to reach consensus, have been extensively studied (Liggett
1999; Sood and Redner 2005) from mathematical point
of view. Several variants of the voter model are also in-
vestigated (Castellano, Munoz, and Pastor-Satorras 2009;
Yang et al. 2009) and non equilibrium phase transition is
analyzed from physics point of view. Yet another line of
work extends the voter model and combine it with a network
evolution model (Holme and Newman 2006; Crandall et al.
2008). The major interests there are different from what this
paper intends to address, i.e., share prediction at a specific
time T with opinion values considered.

Even-Dar and Shapira (2007) investigated the influence
maximization problem (maximizing the spread of the opin-
ion that supports a new technology) under the basic voter
model with two (K = 2) opinions (one in favor of the new
technology and the other against it) at a given target time T .
They showed that the most natural heuristic solution, which
picks the nodes in the network with the highest degree, is in-
deed the optimal solution, under the condition that all nodes
have the same cost. This work is close to ours in that it mea-
sures the influence at a specific time T but is different in all
others (no share prediction, no value considered, K = 2, no
asynchronous update and no learning).

To the best of our knowledge, there has been no study that
tried to predict the future opinion shares from the limited ob-
served data in machine learning framework for the problem
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of modeling the diffusion of several competitive opinions in
a social network based on the voter model with opinion val-
ues considered. We learn the values of opinions from the
limited amount of observed opinion diffusion data (i.e., data
from 0 to T0) and use the estimated values to predict the fu-
ture (i.e., share at T (> T0)). We show that the proposed ap-
proach works very satisfactorily using two real world social
networks, and further a simple theoretical analysis reveals
that it is indeed crucial to consider the opinion values and
accurately estimate them for share prediction.

Our contribution is that 1) we proposed an algorithm that
ensures the global optimal solution for the opinion value es-
timation from the observed opinion diffusion data, 2) we
showed that the estimated model can accurately predict the
future expected opinion share and outperforms the simple
linear extrapolation prediction, and that, in the extreme case
where all the nodes are connected to each other (i.e., com-
plete network), 3) the opinion share prediction problem is
not well-defined without introduction of opinion values and
any opinion can prevail, and 4) the consensus is reached at
which the opinion with the highest value wins and all the
others die.

Opinion Dynamics

We consider the diffusion of opinions in a social network
represented by an undirected (bidirectional) graph G =
(V, E) with self-loops. Here, V and E (⊂ V × V ) are the
sets of all the nodes and links in the network, respectively.
For a node v ∈ V , let Γ(v) denote the set of neighbors of
v in G, that is, Γ(v) = {u ∈ V ; (u, v) ∈ E}. Note that
v ∈ Γ(v).

Voter Model

According to the work (Even-Dar and Shapria 2007), we
recall the definition of the basic voter model with two opin-
ions on network G. In the voter model, each node of G is
endowed with two states; opinions 1 and 2. The opinions
are initially assigned to all the nodes in G, and the evolu-
tion process unfolds in discrete time-steps t = 1, 2, 3, · · · as
follows: At each time-step t, each node v picks a random
neighbor u and adopts the opinion that u holds at time-step
t − 1.

More formally, let ft : V → {1, 2} denote the opinion
distribution at time-step t, where ft(v) stands for the opin-
ion of node v at time-step t. Then, f0 : V → {1, 2} is the
initial opinion distribution, and ft : V → {1, 2} is induc-
tively defined as follows: For any v ∈ V ,
{

ft(v) = 1, with probability
n1(t−1,v)

n1(t−1,v) + n2(t−1,v) ,

ft(v) = 2, with probability
n2(t−1,v)

n1(t−1,v) + n2(t−1,v) ,

where nk(t, v) is the number of v’s neighbors that hold opin-
ion k at time-step t for k = 1, 2.

Value-weighted Voter Model

We extend the original voter model for our purpose. In our
model, the total number of opinions is set to K (≥ 2), and
each node of G is endowed with (K + 1) states; opinions

1, · · ·, K , and neutral (i.e., no-opinion state). We consider
that a node is active when it holds an opinion k, and a node
is inactive when it does not have any opinion (i.e., its state
is neutral). We assume that nodes never switch their states
from active to inactive. In order to discuss the competitive
diffusion of K opinions, we introduce the value parameter
wk (> 0) for each opinion k. In the same way as the orig-
inal voter model, let ft : V → {0, 1, 2, · · · , K} denote the
opinion distribution at time t, where opinion 0 denotes the
neutral state. We also denote by nk(t, v) the number of v’s
neighbors that hold opinion k at time t for k = 1, 2, · · · , K ,
i.e.,

nk(t, v) = |{u ∈ Γ(v); ft(u) = k}|.

We start the evolution process from an initial state in
which each opinion is assigned to only one node and all
other nodes are in the neutral state. Given a target time T ,
the evolution process unfolds in the following way. In gen-
eral, each node v considers changing its opinion based on the
current opinions of its neighbors at its (j − 1)th update-time
tj−1(v), and actually changes its opinion at the jth update-
time tj(v), where tj−1(v) < tj(v) ≤ T , j = 1, 2, 3, · · ·,
and t0(v) = 0. It is noted that since node v is included in
its neighbors by definition, its own opinion is also reflected.
The jth update-time tj(v) is decided at time tj−1(v) accord-
ing to the exponential distribution of parameter λ (we simply
use λ = 1 for any v ∈ V in our experiments)1. Then, node
v changes its opinion at time tj(v) as follows: If node v has
at least one active neighbor at time tj−1(v),

ftj(v)(v) = k, with probability
wk nk(tj−1(v), v)

∑K

k′=1 wk′ nk′(tj−1(v), v)

for k = 1, · · · , K , otherwise,

ftj(v)(v) = 0, with probability 1.

Note here that ft(v) = ftj−1(v)(v) for tj−1(v) ≤ t < tj(v).
If the next update-time tj(v) pasts T , that is, tj(v) > T , then
the opinion evolution of v is over. The evolution process
terminates when the opinion evolution of every node in G is
over.

Opinion Share Prediction

Based on our opinion dynamics model, we investigate the
problem of predicting how large a share each opinion will
have at a future target time T when the opinion diffusion
is observed from t0(= 0) to T0 (< T ). Let DT0

be the
observed opinion diffusion data in time-interval [0, T0], that
is,

DT0
= {(v, t, ft(v)); v ∈ V, t = 0, t1(v), · · · , tJv

(v)}.

Note that tJv
(v) ≤ T0 for every v ∈ V . We define the

population hk(t) of opinion k at time t by

hk(t) = |{v ∈ V ; ft(v) = k}|

for k = 1, 2, · · · , K .

1Note that this is equivalent to picking a node randomly and
updating its opinion in turn |V | times.
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Figure 1: An example of opinion population curves in the
blog network for K = 3.

Figure 1 shows an example of opinion population curves
h1(t), h2(t), h3(t) for K = 3 in the blog network (see the
section of “Experimental Evaluation” below), where w1 =
1.5, w2 = 1.0, w3 = 1.1. Here, if we set T0 = 5 and
T = 30, we are able to observe D5 and thus {hk(t); 0 ≤
t ≤ 5} for k = 1, 2, 3 and the problem is to predict h1(30),
h2(30), h3(30). Note that although the opinion dynamics is
stochastic, we found that the variance of the value of hk(30)
(k = 1, 2, 3) is relatively small for T0 = 5. We can easily
see from Figure 1 that the naive time-series analysis method
does not work well for this prediction problem. Thus, it is
crucial to accurately estimate the values of w1, w2 and w3

from the observed opinion diffusion data.
We define the share gk(t) of opinion k at time t by

gk(t) =
hk(t)

∑K

k′=1 hk′(t)
.

Since our opinion dynamics model defines a stochastic pro-
cess, we consider the problem of predicting the expected
share of each opinion k at a given target time T , denoted
by gk(T ). For solving this problem, we develop a method
that effectively estimates the values of value parameters
w1, · · · , wK from the observed data DT0

.

Simple Case Analysis

We analyze the effects of value parameters at the time t
where all nodes have become active for an extreme case in
which the network is complete, i.e., neighbors of each node
cover the whole network. According to the previous work
(e.g., (Sood and Redner 2005)), the expected share change
dgk(t) can be calculated as follows:

dgk(t) =
1

|V |
(1 − gk(t))

gk(t)wk∑K

k′=1 gk′(t)wk′

−
1

|V |
gk(t)

(
1 −

gk(t)wk∑K

k′=1 gk′(t)wk′

)

=
1

|V |

(
gk(t)wk∑K

k′=1 gk′(t)wk′

− gk(t)

)
. (1)

Now, let k∗ be the opinion with the highest value parameter
such that wk∗ > wk for all the other opinion k (k 6= k∗).
Then, we can obtain the following inequality from Eq. (1)
when gk(t) > 0 for all k:

dgk∗(t) =
gk∗(t)wk∗

|V |
∑K

k=1 gk(t)wk

(
1 −

K∑

k=1

gk(t)
wk

wk∗

)

>
gk∗(t)wk∗

|V |
∑K

k=1 gk(t)wk

(
1 −

K∑

k=1

gk(t)

)
= 0.

Here note that wk/wk∗ < 1 for k 6= k∗. Therefore, un-
less gk∗(t) = 0, the opinion k∗ is expected to finally prevail
the others, regardless of its current share since the function
gk∗(t) is expected to increase as time passes until each of the
other opinion shares becomes 0. This result suggests that it
is crucially important to accurately estimate the value pa-
rameter of each opinion from the observed data DT0

. More-
over, we can see that if the value parameters are uniform,
any opinion can become a winner. These observations im-
ply that the expected share prediction problem can be well-
defined only when the opinion values are non-uniform. We
conjecture that results will be similar for more realistic net-
works, although the above analysis is valid for a complete
network.

Consensus Time Analysis

We further analyze the consensus time by using the above
simple case. For simplicity, we assume that wk = w if
k 6= k∗, i.e., the values of the other value parameters are
the same. Let r be the ratio of the value parameters defined
by r = w/wk∗ ; then, by regarding 1/|V | as a time step dt
(e.g., (Sood and Redner 2005)), we can obtain the following
differential equation for gk∗(t) from Eq. (1):

dgk∗(t)

dt
=

gk∗(t)

r(1 − gk∗(t)) + gk∗(t)
− gk∗(t)

=
(1 − r)gk∗(t)(1 − gk∗(t))

r + (1 − r)gk∗(t)
.

From this differential equation, we can easily derive the fol-
lowing solution:

r

1 − r
log(gk∗(t)) −

1

1 − r
log(1 − gk∗(t)) = t + C,

where C stands for a constant of integration. Figure 2 shows
examples of expected share curves based on the above solu-
tion with different ratios of the value parameters, where the
ratio r is set to r = 1 − 2−a (a = 1, 2, 3, 4, 5), and each
curve is plotted from t = 0 by assuming gk∗(0) = 0.01 until
t = T that satisfies gk∗(T ) = 0.99. From this figure, we
can see that the consensus time is quite short when the ra-
tio r is small, while it takes somewhat longer when the ratio
r approaches to 1. More importantly, this result indicates
that the consensus time of our model is extremely short even

1366



Figure 2: Examples of expected share curves.

when the ratio r is close to 1, compared with the basic voter
model studied in previous work (e.g., (Even-Dar and Shapria
2007)). Therefore, we consider that the voter model can be
more practical by introducing the value parameters.

Learning Method

For a given observed opinion diffusion data DT0
, we focus

on the competitive opinion diffusion data CT0
defined by

CT0
= {(v, t, ft(v)) ∈ DT0

; |{u ∈ Γ(v); ft(u) 6= 0}| ≥ 2}.

Then, from the evolution process of our model described in
the previous section, we can obtain the following likelihood
function2:

L(w; CT0
) = log

∏

(v,t,k)∈CT0

nk(t, v)wk∑K

k′=1 nk′(t, v)wk′

, (2)

where w stands for the K-dimensional vector of value pa-
rameters, i.e., w = (w1, · · · , wK). Thus our estimation
problem3 is formulated as a maximization problem of the
objective function L(w; CT0

) with respect to w.
Note that the objective function L(w; CT0

) is invariant
to positive scaling of the value parameter vector w, and
each value parameter wk must be positive, as noted earlier.
In order to formulate our maximization problem as an un-
constrained optimization problem, we reparameterize each
value parameter wk by using a (K − 1)-dimensional vector
z = (z1, · · · , zK−1) as follows:

wk =

{
exp(zk) if k < K,

1 if k = K.
(3)

Namely, our estimation problem is formulated as an opti-
mization problem of the objective function L1(z; CT0

) (=
L(w; CT0

)) with respect to z.

2Introduction of CT0
is simply to avoid log(0/0) and log 1.

3The delay time parameter λ can also be a parameter, but it can
simply be estimated by averaging the time intervals for each node,
and thus excluded from the estimation problem. Estimating this
parameter is not critical to the current problem because its value
simply contributes to scaling the time unit.

In order to derive our learning algorithm, we consider the
following probability that the node v adopts the opinion k
(k < K) at time t.

qk(t, v) =
nk(t, v) exp(zk)

nK(t, v) +
∑K−1

k′=1 nk′(t, v) exp(zk′)
(4)

Then, we can obtain the first-order derivative (gradient vec-
tor element) of L1(z; CT0

) with respect to zi as follows:

∂L1(z; CT0
)

∂zi

=
∑

(v,t,k)∈CT0

(δk,i − qi(t, v)),

where δk,i is the Kronecker’s delta. Similarly, we can obtain
the second-order derivative (Hessian matrix element) with
respect to zi and zj as follows:

∂2L1(z; CT0
)

∂zi∂zj

=
∑

(t,v,k)∈CT0

(qi(t, v)qj(t, v) − δi,jqi(t, v)).

Here note that the following quadratic form of the Hessian
matrix is non-positive for an arbitrary (K − 1)-dimensional
non-zero vector x = (x1, · · · , xK−1),

K−1∑

i,j=1

∂2L1(z; CT0
)

∂zi∂zj

xixj

=
∑

(v,t,k)∈CT0




(

K−1∑

i=1

qi(t, v)xi

)2

−

K−1∑

i=1

qi(t, v)x2
i





= −
∑

(v,t,k)∈CT0

K−1∑

i=1

qi(t, v)



xi −
K−1∑

j=1

qj(t, v)xj




2

−
∑

(v,t,k)∈CT0

(
1 −

K−1∑

i=1

qi(t, v)

)


K−1∑

j=1

qj(t, v)xj




2

≤ 0.

Thus we can guarantee that the solution of our problem
is global optimal. Our implemetation employes a sandard
Newton method. The algorithm of the proposed method is
summarized below.

1. Initialize parameter vector z as zk = 0 for k =
1, · · · , K − 1.

2. Calculate the gradient vector at the current parameter
vector z.

3. If the gradient vector is sufficiently small, i.e.,∑
i(∂L1(z; CT0

)/∂zi)
2 < η, output the value parameters

by using Eq. (3) then terminate. Otherwise, go to 4.

4. Calculate the Hessian matrix and its inverted matrix, and
update the parameter vector z by multiplying the inverted
matrix and the gradient vector, and return to 2.

Here η is a parameter for the termination condition. In our
experiments, η is set to a sufficiently small number, i.e., η =
10−12.

1367



(a) T0 = 5, T = 30 (b) T0 = 10, T = 30 (c) T0 = 15, T = 30

Figure 3: Results for share prediction in the blog network.

(a) T0 = 5, T = 30 (b) T0 = 10, T = 30 (c) T0 = 15, T = 30

Figure 4: Results for share prediction in the Wikipedia network.

Experimental Evaluation

Network Datasets and Experimental Settings

We employed two datasets of large real networks used in
(Kimura, Saito, and Motoda 2009), which are bidirectional
connected networks and exhibit many of the key features
of social networks. The first one is a trackback network
of Japanese blogs and had 12, 047 nodes and 79, 920 di-
rected links (the blog network). The second one is a network
of people that was derived from the “list of people” within
Japanese Wikipedia, and had 9, 481 nodes and 245, 044 di-
rected links (the Wikipedia network).

We varied K = 2, 3, · · · , 10, and for each of them we
predicted the expected share gk(T ) of opinion k (k =
1, 2, · · · , K) for the observed data DT0

. We set T = 30,
investigated the cases T0 = 5, 10, 15, and selected the true
value of each value parameter wk from the interval [0.5, 1.5]
uniformly at random. We chose the top K nodes with re-
spect to node degree ranking as the initial K nodes, and gen-
erated DT0

by simulating the true model. After we have esti-
mated the value of each wk , we predicted the value of gk(T )
by simulating the model M times from DT0

and taking their
average, where we used M = 100. In fact, our preliminary
experiments indicate that the result for M = 100 are not
much different from those for M = 1, 000 and 10, 000 in
the blog and the Wikipedia networks. Note that the num-
ber of opinion updates amounts to tens of thousands for one

instance of DT0
, and thus no overfitting problem arises.

Comparison Methods and Evaluation Measure

Given the observed data DT0
, we can simply apply a linear

extrapolation for predicting the expected share of opinion k
at a target time T , since we can naively speculate that the
recent trend for each opinion continues. Thus, we consider
predicting the values of g1(T ), · · ·, gK(T ), by estimating
the value of the population hk(T ) of opinion k at time T
based on the linear extrapolation from the values of hk(T0−
∆) and hk(T0) for each k, where ∆ is the parameter with
0 < ∆ ≤ T0. We refer to this prediction method as the
naive linear method. We evaluated the effectiveness of the
proposed share prediction method by comparing it with the
naive linear method.

Let ĝk(T ) be the estimate of gk(T ) by a share prediction
method. We measured the performance of the share predic-
tion method by the prediction error E defined by

E =

K∑

k=1

|ĝk(T ) − gk(T )|.

Experimental Results

Figures 3a, 3b, and 3c are the results for the blog network,
and Figures 4a, 4b, and 4c for the Wikipedia network, where
circles indicate the prediction errors of the proposed method,
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and squares, triangles, and asterisks indicate the prediction
errors of the naive linear method adopting ∆ = 1, ∆ = 2,
and ∆ = 3, respectively. We conducted 10 trials varying the
true values of value parameters for each K , and plotted the
average of E over the 10 trials.

From these figures, we can see that the prediction error de-
creases as the observation time T0 becomes longer and that
the proposed method outperforms the naive linear method
in every case. When T0 = 5, the average prediction er-
ror of the proposed method was 0.139 for the blog network
and 0.100 for the Wikipedia network, while that of the naive
method was at least 0.465 and 0.424, respectively in case of
∆ = 1. When T0 = 15, the average prediction error of the
proposed method was 0.033 for the blog network and 0.032
for the Wikipedia network, while that of the naive method
was at least 0.128 for the blog network and 0.110 for the
Wikipedia network in case of ∆ = 3, which is comparable
to those of the proposed method for T0 = 5. Moreover, we
observed that the proposed method accurately predicted the
share at T even in the case that the share ranking at T0 got
reversed at the target time T as shown in Figure 1. This is
attributed to the use of the estimated value parameters which
take different values for different opinions, and is consistent
with the aforementioned analysis on a complete network.

During the experiments we noticed that the time needed to
reach the consensus gets longer when the difference between
the largest and the second largest values of the value param-
eters is small. This can also be predicted by the consensus
time analysis, i.e., considering the case where the highest
two values are the same and the rest are also the same.

Consequently, we confirmed that the results of our theo-
retical analyses hold in real networks and that the proposed
method outperforms the naive linear method. On average,
the prediction error of the proposed method was about four
times less for a given T0. Besides, it achieved a compara-
ble prediction accuracy in three times less observation time
compared with the naive linear method.

Conclusion
We addressed the problem of how different opinions with
different values spread over a social network and how their
share changes over time in a machine learning setting us-
ing a variant of voter model, the value-weighted voter model
with multiple opinions. The task is first to estimate the opin-
ion values from the limited amount of observed data and
the goal is to predict the expected opinion share at a future
target time. We derived an algorithm that guarantees the
global optimal solution for the opinion value estimation and
showed using two real world social networks that the val-
ues are learnable from a small amount of observed data and
the share prediction with use of the estimated values is satis-
factorily accurate and outperforms the prediction by a sim-
ple linear extrapolation. Theoretical analysis for an extreme
case where all the nodes are connected to each other (a com-
plete network) revealed that the expected share prediction
problem is well-defined only when the opinion values are
non-uniform in which case the final consensus is winners-
takes-all, i.e., the opinion with the highest value wins and
all the others die, and when they are uniform, any opinion

can be a winner. Our immediate future work is to validate
the credibility of the voter model using available real opinion
propagation data.
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