
Commonsense Knowledge Mining from the Web

Chi-Hsin Yu and Hsin-Hsi Chen
Department of Computer Science and Information Engineering, National Taiwan University

No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)
jsyu@nlg.csie.ntu.edu.tw, hhchen@ntu.edu.tw

Abstract

Good and generous knowledge sources, reliable and effi-
cient induction patterns, and automatic and controllable qual-
ity assertion approaches are three critical issues to com-
monsense knowledge (CSK) acquisition. This paper em-
ploys Open Mind Common Sense (OMCS), a volunteers-
contributed CSK database, to study the first and the third
issues. For those stylized CSK, our result shows that over
40% of CSK for four predicate types in OMCS can be found
in the web, which contradicts to the assumption that CSK
is not communicated in texts. Moreover, we propose a
commonsense knowledge classifier trained from OMCS, and
achieve high precision in some predicate types, e.g., 82.6% in
HasProperty. The promising results suggest new ways of an-
alyzing and utilizing volunteer-contributed knowledge to de-
sign systems automatically mining commonsense knowledge
from the web.

Introduction
Knowledge acquisition bottleneck is an important issue in
commonsense reasoning. Approaches that acquire common-
sense knowledge from different sources (Singh et al. 2002;
Chklovski 2003; Schubert and Tong 2003) have been pro-
posed, but few focus on studying the properties of CSK
(Chklovski and Gil 2005). While good CSK acquisition ap-
proaches may result in large or high quality CSKs, mastering
the proprieties of CSK is essential and can be beneficial for
designing new and efficient acquisition methods.

Chklovski (2005) roughly classified CSK acquisition ap-
proaches into three categories according to the knowledge
sources. The approaches of the first category collect CSK
from experts. WordNet (Fellbaum 1998) and CYC (Lenat
and Guha 1989) are typical examples. A lot of knowledge
is collected by linguists or by knowledge engineers. These
approaches result in well-organized and high quality knowl-
edge base, but the cost is expensive and then limits the
scalability. The approaches of the second category collect
CSK from untrained volunteers. Open Mind Common Sense
(OMCS) (Singh et al. 2002) and LEARNER (Chklovski
2003) are of this type. These approaches employ the vast
volunteers in the Web to contribute CSK and correct the in-
put CSK. The resulting CSK assertions can be in the order
of million, but its quality is not as high as WordNet. The
last approaches collect CSK from texts/the Web using algo-
rithms. TextRunner (Etzioni et al. 2008), KNEXT (Schubert
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2009), and the systems (Clark and Harrison 2009; Cankaya
and Moldovan 2009; Girju, Badulescu, and Moldovan 2006)
are of this type. These approaches usually process texts or
web pages first, and then use lexical or syntactical patterns to
extract facts or general knowledge. Because the CSK mined
is large, it is not feasible to examine all CSK assertions man-
ually. The performance of a knowledge acquisition algo-
rithm is evaluated directly by assessors’ small sampling or
indirectly by employing the extracted knowledge to some
tasks such as word sense disambiguation and examining the
performance of applications. These approaches have the fea-
sibility of controllable knowledge domain and scalability of
extracted knowledge base, but the quality of resulting CSK
is hard to control.

Algorithm 1 Automatic CSK mining from texts
1: Let K be a seed set of CSK
2: Build classifier C from K
3: repeat
4: Identify CSK in texts and analyze its context
5: Induce new lexical or syntactical patterns P
6: Extract new CSK from texts using patterns P
7: Assert the quality of new CSK using classifier C
8: Let K be union of new CSK set and K
9: Build new classifier C from K

10: until No more qualified CSK is extracted

This paper adopts a general CSK mining algorithm shown
in Algorithm 1. To generate a large knowledge base of high
quality from a seed CSK set, the knowledge source, the in-
duction of mining patterns, and the quality assertion of CSK
are three major issues. In this paper, we experiment with
OMCS knowledge base and conclude that large portion of
high quality CSK is explicitly stated in the web for some
predicate types. It resolves the debate that CSK is not com-
municated in the texts–at least for those stylized CSK. Be-
sides, we also introduce CSK classifiers to verify the correct-
ness of assertions. This approach opens new ways to assert
the quality of a large CSK set automatically.

Commonsense Knowledge in Texts
Although algorithms that use lexical patterns to mine knowl-
edge from texts are very common, the CSK-in-text assump-
tion behind the algorithms is never asserted or analyzed.
Some researches take CSK-in-text for granted (Schwartz
and Gomez 2009; Clark and Harrison 2009), while some re-
searches assume that most of CSK are un-stated and need
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to be taught by human (Singh et al. 2002). We analyze the
”explicitly stated” CSK from OMCS. For example, ”A car
is a vehicle” is an assertion in OMCS, and this assertion is
stated in sentence ”A car is a vehicle with specific charac-
teristics.” in the web. Therefore, this assertion is defined as
an explicitly stated CSK (abbreviated as e-CSK hereafter).

Knowing explicitly stated CSK has some practical uses.
For example, we can collect context for an e-CSK, analyze
and further classify its context, and apply the analyzed con-
text to mine new CSK of similar types. This kind of knowl-
edge is also important for the study of commonsense knowl-
edge usage in language.

OMCS Database
OMCS project1 in MIT has announced a public available
database which contains CSK all contributed by volunteers.
In this database, sentences entered by users are processed to
a predefined format. Each sentence has two concepts corre-
sponding to two arguments with a specific predicate. There
are 18 predicate types in this database. Table 1 lists some
examples.

Predicate Concept 1 Concept 2
CausesDesire the need for money apply for a job
HasProperty Stones hard
Causes making friends a good feeling
HasPrerequisite having a party inviting people
CapableOf a cat catch a mouse
HasSubevent having fun laughing
UsedFor a clothing store changing room trying on clothes
IsA a swiss army knife a practical tool
AtLocation a refrigerator freezer the kitchen

Table 1: Examples from OMCS database

Besides, each sentence has a confidence score determined
by users collaboratively. When a user asserts a sentence as
a valid CSK, the corresponding score is increased by one.
On the contrary, if a user negates this sentence as a valid
CSK, its score is decreased by one. In this way, the confi-
dence score of a CSK can be considered as an indicator of
its quality.

Estimation Method of e-CSK
We use the OMCS dataset to estimate the number of e-CSKs
in texts. An assertion in OMCS is submitted to a search
engine as a single string to get its occurrence count in the
web. But search results may have noises. For example, the
search results of ”A car is a vehicle” may be as follows,
where (a) is a noise and (b) is a valid e-CSK:
(a) An extended warranty on a car is a vehicle service con-

tract between the warranty company and you.
(b) Because a car is a vehicle, it moves and carries things.

To decrease the effects of noises, we consider frequency
as a filter. If the number of occurrences of an assertion is
larger than a given threshold, this assertion is regarded as
an e-CSK. Instead of Google2, we use Google AJAX3 for
estimation. Google AJAX has no limitation on the number
of submitted sentences, but the returned search results are

1http://conceptnet.media.mit.edu/dist/
2http://www.google.com
3http://ajax.googleapis.com

usually less than those returned from Google. To estimate
the search results in Google by using the search results in
Google AJAX, we adopt linear measurement model (linear
regression) as follows:

y = a× x− b (1)

x =
√

search result in AJAX (2)

y =
√

search result in Google (3)

In equation (2) and (3), we use square root on search re-
sults to decrease the weights of sentences of high frequency.

Experiment Settings Three datasets are selected from
OMCS for experiments. Dataset A has 630,464 English sen-
tences which are used for queries to Google AJAX. Dataset
B consists of 12,049 sentences randomly selected from
dataset A. These sentences are used for queries to Google.
Dataset C, which is a part of Dataset A, is composed of sen-
tences having confidence scores in OMCS database. For
comparison, we also randomly generate a data set consist-
ing of 299,454 sentences and having similar sentence length
distribution to Dataset C. These sentences can’t be found by
searching Google AJAX, so that the result is not reported
hereafter.

Threshold Selection The parameters a and b of the re-
sulting linear regression model specified in equation (1) are
4.1425 and 2.6657, respectively. Before determining a spe-
cific threshold for e-CSK, we have to know whether the
AJAX search result is well-behaved as expected. We use
language models to model its behavior.

Suppose both CSK and e-CSK are generated by language
models MCSK and Me-CSK, respectively, and the two models
have the same vocabulary. Using naı̈ve Bayes model, we
have the first equality in (4), in which wi is i-th word in a
sentence. To simplify equation (4), we assume all words
have equal probability to be drawn from vocabulary, and we
have the second equality in (4), in which w is any word from
vocabulary. We can conclude that the ratio in (4) decrease
exponentially to the sentence length in word.

Number of explicitly stated CSK with L words
Number of CSK with L words

' P (sentence with L words |Me-CSK)
P (sentence with L words |MCSK)

=
∏L

i=1 p(wi |Me-CSK)∏L
j=1 p(wj |MCSK)

=
(

p(w |Me-CSK)
p(w |MCSK)

)L

(4)

f(L) = c× 2−d×L+e + g (5)
To verify the derived model in (4) by experimental data,

we use function f(L) in (5) to fit the search results of
dataset A. The fitting between AJAX search result ≥ 7 and
function f(L) that uses the nonlinear least-squares (NLLS)
Marquardt-Levenberg algorithm is shown in Fig. 1.

In Fig. 1, y-axis denotes the ratio in (4), and x-axis is the
sentence length L in word. The function f(L) perfectly fits
experimental data that has at least 7 AJAX search results. It
indicates that the AJAX search results can be modeled by
(4) and is well-behaved. Next, we want to decide an e-CSK
threshold in such a way that a sentence is regarded as an e-
CSK when its AJAX search result is larger than this thresh-
old. Fig. 2 shows how to determine the threshold.
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Figure 1: Fitting function f(L) to AJAX search result ≥7

Figure 2: Percentage of sentences of different search results
given different sentence length

In Fig. 2, the lines are gradually converged as the minimal
number of Google AJAX search results increases from 1 to
10. Besides, if the number of the search results in Google
AJAX is 10, the number of search results in Google equals
to 109, which has high probability to be an e-CSK with these
occurrences. Therefore, 10 is considered as the threshold of
e-CSK.

Statistics about e-CSK

We use dataset C to derive some statistics of e-CSK. Fig. 3
shows the relationship between confidence score (CS) and
e-CSK.

Figure 3: Relationship between confidence score and e-CSK

Num. of CSK with (CS ≥ q and AJAX results ≥ p)

Number of CSK with CS ≥ q
(6)

In Fig. 3, y-axis is the ratio defined in (6), where
p ∈ {1, 4, 7, 10} and q ∈ {1, ..., 12}. ”All CSK” in
Fig. 3 is the ratio without the limitation on CS, and its de-
nominator of the percentage is the size of dataset C. Besides
e-CSK (i.e., AJAX search result ≥ 10), we also plot other
AJAX search results (1, 4, and 7) for reference. We can see
that the percentage increases along with confidence scores.
In other words, sentences of higher confidence scores tend
to have higher probability to be mentioned explicitly. When
CS is larger than four, 16.8% of sentences are e-CSK. That
means a large portion of high quality CSK can be found in
texts. Because OMCS records person’s CSK, it reverses the
usual assumption that CSK is not communicated.

Figure 4: Relationship between predicate types and e-CSK

Fig. 4 further tells the relationship between predicate
types and e-CSK. Y-axis is interpreted similarly as that in
Fig. 3 except that we calculate the ratio by different predi-
cate types. In Fig. 4, total 7 of 18 predicate types in dataset
C are shown here. The remaining 11 predicate types whose
ratios are smaller than 3% are ignored. All points in this fig-
ure have at least 90 CSK sentences to maintain the statistical
significance. We can find that more than 40 percents of sen-
tences are e-CSK in four predicate types, i.e., HasProperty,
IsA, PartOf, and CapableOf, when CS is larger than four.
Especially, 82.2% of sentences of HasProperty type can be
found in texts.

There are two main reasons why the ratio of the remaining
11 predicate types are too small to be included in the figure.
First, some patterns used in OMCS are not very common
in language. For example, ”If you want to go for a drive
then you should get a car” has high CS but has low Google
search results. This sentence is collected by using pattern
”If you want to * then you should *”. Second, some CSK
are usually mentioned implicitly. For example, ”a lobby is
used for waiting” and ”Beds are used to sleep in” are two
sentences of high confidence socres but of 0 Google search
result. Instead, ”waiting in the lobby” and ”sleep in bed”
have 806,000 and 13,800,000 Google search results, respec-
tively.

Commonsense Knowledge Classification
The second goal of this paper is to build a general purpose
CSK classifier with broad coverage. Classification algo-
rithms are cost effective and easy to control, comparing to
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human-involved acquisition approaches. We focus on bi-
nary classifier which labels a given assertion with CSK or
non-CSK.

Representation Scheme
For CSK classification, we propose a representation scheme
to denote an assertion. In OMCS database, an assertion is
already preprocessed to a tuple, i.e., (PredicateType, Con-
cept1, Concept2), which have been shown in Table 1. Be-
cause a concept is usually a phrase, a concept is specified by
slots. The number of slots depends on different approaches
shown as follows. A slot in turn contains words, and a word
is represented by a co-occurrence vector.

Word Representation: We use a co-occurrence vector
Wi in (7) to represent a word wi in a slot, where D is a dic-
tionary with size |D|, dj is the j-th entry in D, and f(dj , wi)
is the co-occurrence frequency of entry dj and wi in a cor-
pus.

Concept Representation: We propose three approaches
to determine the number of slots and how to place words in
a concept into slots. The three approaches are discussed as
follows:

1. Bag-of-Words (BoW) Approach: All words are placed
in one slot. BoW is considered as a baseline.

2. N-V-OW Approach: All words are categorized into three
slots, named HeadNoun, FirstVerb, and OtherWords.
HeadNoun and FirstVerb are the head nominal of a phrase
and the first verb of a phrase, respectively. Those words
that are not in the two slots are put into OtherWords slot.

3. N-V-ON-OW Approach: All words are categorized into
four slots, named HeadNoun, FirstVerb, Other-Nouns,
and OtherWords. HeadNoun and FirstVerb are interpreted
the same as those in the second approach. We further dis-
tinguish other words by their parts of speech (i.e., noun
vs. non-noun).

Wi = (f(d1, wi), f(d2, wi), ..., f(d|D|, wi)) (7)

Sj,k =
∑

wi ∈ slot k of concept j

Wi (8)

C1 = (S1,1, S1,2, S1,3) (9)
C2 = (S2,1, S2,2, S2,3) (10)

With the approaches defined above, the vector Sj,k of slot
k in concept j is described in (8). Vector C1 of Concept1
and vector C2 of Concept2 by using N-V-OW approach is
described in (9) and (10), respectively. The concept vectors
for BoW and N-V-ON-OW approaches are defined in the
similar way.

Assertion Representation: An assertion is a tuple as de-
scribed, but we ignore the PredicateType information here
because it is usually the same within a predicate. For exam-
ple, in IsA predicate, the keywords are ”is” or ”are” which
did not help much for binary classification in our setting.
Hence, an assertion is a vector (C1, C2) in which C1 and C2
come from Concept1 and Concept2, respectively.

CSK Classification Algorithm
CSK classification algorithm is described in Algorithm

2. In step 1, we use Stanford POS tagger (Toutanova et al.
2003) to get tags. In step 2, we identify the head noun and
the first verb of concepts by heuristic rules. For example, the

Algorithm 2 CSK Classification Algorithm
Preprocessing

1: Use POS Tagger to tag an assertion
2: Place words of concepts into slots
3: Derive vector of word Wi from a corpus
4: Represent an assertion

Feature Selection
5: Normalize concepts C1 and C2 to 1, respectively
6: Calculate Pearson correlation coefficient of each feature

in slot
7: Select the first 10% features in each slot

Classification
8: Use support vector machine to classify assertions

first appearance of a verb in a tagged sequence is regarded as
the first verb, and the last noun in a phrase is considered as
the head noun. We distinguish noun and non-noun by parts
of speech. In step 3, we consider Google Web 1T 5-Gram
as our reference corpus (Brants and Franz 2006), and em-
ploy only 5-gram entries in this corpus. This corpus consists
of approximately 1 trillion English word tokens from web
pages to generate word n-grams and their frequency count.
Take a 5-gram entry in Google 1T5G as an example:

last moments of your life 280

This 5-gram occurs 280 times, so it contributes co-
occurrence frequency 280 to word pair moments and life.
We sum all related frequencies in all 5-grams to determine
the final co-occurrence count of this word pair.

The dictionary D in step 3 is a combination of WordNet
3.0 and Webster online dictionary4 (noun, verb, adjective,
and adverb). The resulting lexicon contains 236,775 entries.
In step 5, the concept vectors are normalized to 1 respec-
tively to equally emphasize on the two concepts. Only top
10% of features are selected.

Experiment Settings
Datasets: We select positive assertions from OMCS and au-
tomatically generate negative assertions to produce a bal-
ance dataset for a predicate type. The positive assertions
must meet the following four criteria: (1) the confidence
score of an assertion must be at least 4; (2) the polarity must
be positive (Note that there are positive and negative polar-
ities in OMCS, and only 1.8% of assertions with CS ≥ 4
have negative polarity.); (3) a concept contains no relative
clause, conjunct, or disjunct; and (4) the length of a concept
is less than 8 words for simplicity. The negative assertions
are generated by randomly selecting and merging concepts
from the OMCS database. We ignore datasets of size smaller
than 200. Table 2 lists the resulting nine datasets among 18
predicate types in OMCS.

Predicate Size Predicate Size
CausesDesire 204 HasSubevent 1026
HasProperty 254 UsedFor 1442

Causes 510 IsA 1818
HasPrerequisite 912 AtLocation 2580

CapableOf 916

Table 2: Datasets for CSK classification
4http://www.mso.anu.edu.au/∼ralph/OPTED/index.html
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Experiment Procedure: For each dataset, we randomly
split 90% for training and 10% for testing. Next, we use
LibSVM for classification. In SVM training, we adopt radial
basis for kernel function, grid search in parameters (c, g) (80
pairs). After the best parameters are obtained, we train a
model on training set by using these parameters, and apply
trained model to test set. The same procedure is repeated ten
times to obtain statistically significant results.

Note the performance variation of a classifier in classify-
ing commonsense knowledge. We can view a train set as a
knowledgebase that one person owns, and this person may
be good at some aspects but bad at other aspects. This kind
of train set may over-fit on some aspects and miss-classify
other valid CSK. Because we aim to obtain a general pur-
pose CSK classifier with broad coverage, the performance
variation is an important indicator to evaluate a CSK classi-
fication algorithm.

Experiment Results
The test performance of classifiers is shown in Fig. 5. The
standard deviation and database size are also shown in this
figure.

Figure 5: Classifiers’ testing accuracy on nine datasets

In Fig. 5, N-V-OW approach and N-V-ON-OW approach
are better than BoW approach except in CausesDesire predi-
cate type. N-V-ON-OW approach tends to have smaller per-
formance variation than BoW and N-V-OW approaches. N-
V-OW approach has the best accuracy (82.6%) and varia-
tion in HasProperty predicate. The best result of IsA pred-
icate is 74.4%, which is comparable to similar problems in
SemEval-2007 Task 4, Classifcation of Semantic Relations
between Nominals (Girju et al. 2007). Although the accu-
racy variation is reduced when dataset size increases, it is
still large. We analyze the percentage of support vectors and
show it in Fig. 6.

Fig. 6 shows the percentage of support vectors is usually
larger than 60%. The consequence is that the behavior of the
resulting SVM classifiers is similar to k-nearest neighbor al-
gorithm. We can see this in the decision function of SVM
classifier. When classifiers’ behavior is like the kNN algo-
rithm, the variation on train set has a great impact on the per-
formance of test set. That results in large accuracy variation.
This result can be read from two perspectives: first, CSK in
OMCS database has great diversity which is good for CSK
acquisition approach; second, the large percentage of sup-
port vectors will result in expensive computation in runtime

Figure 6: The percentage of support vectors in trained clas-
sifiers

which is bad for using SVM classifiers in large scale CSK
acquisition. Reducing the percentage of support vectors is
a very important issue if we use SVM classifier. One solu-
tion for this problem is to learn a specific classifier for one
domain instead of a general purpose classifier. In this ap-
proach, a domain detection algorithm is needed for domain
switching, and errors may be introduced.

Conclusions and Future Work
In this paper, we study two important issues in automatic
CSK mining. The experimental results show that more than
40% of assertions are e-CSK (explicitly stated CSK in text)
for four predicate types in OMCS including HasProperty,
IsA, PartOf, and CapableOf. This exciting result opens new
directions to study the properties of volunteers-contributed
datasets. Researchers can distinguish e-CSK and non-e-
CSK by using OMCS database, and then focus their atten-
tions on mining non-e-CSK from users in public domain,
studying the differences between e-CSK and non-e-CSK,
and studying what kind of knowledge in what kind of sit-
uations may be stated in texts. That will be important to
know the properties of CSK and will be also useful to boost
the knowledge mining approaches.

The use of classifier in CSK acquisition is new, and a lot
of issues are worthy of investigation. For example, what
kind of classifier is better for CSK classification, general
purpose or special purpose? How do we integrate CSK clas-
sifier into volunteers-contributed acquisition systems to as-
sert user input knowledge or to filter out nonsense CSK gen-
erated by systems such as AnalogSpace (Speer, Havasi, and
Lieberman 2008)? And how do we use classifier to grad-
ually improve the quality of mined CSK? Those problems
are not only useful for CSK classifier, but also important for
CSK analysis.
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