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Abstract

Burst detection is an important topic in temporal stream anal-
ysis. Usually, only the textual features are used in burst
detection. In the theme extraction from current prevailing
social media content, it is necessary to consider not only
textual features but also the pervasive collaborative context,
e.g., resource lifetime and user activity. This paper explores
novel approaches to combine multiple sources of such indi-
cation for better burst extraction. We systematically investi-
gate the characters of collaborative context, i.e., metadata fre-
quency, topic coverage and user attractiveness. First, a robust
state based model is utilized to detect bursts from individual
streams. We then propose a learning method to combine these
burst pulses. Experiments on a large real dataset demonstrate
the remarkable improvements over the traditional methods.

1 Introduction

The proliferating social media fever has brought out lots of
User Generated Content (UGC), such as blog posts, com-
ments, tags and tweets. Various types of data, e.g., text,
photo, music and video, are created and consumed. UGC
becomes one of the main prevailing web trends (Baeza-Yates
2009).

UGC reflects prior viewpoint from an attendee’s perspec-
tive. Social media content is usually event-driven, and be-
comes an ideal source to reflect the real-word pulse, i.e.,
popularity of topics and events. Fig 1 presents the frequency
change of some representative words from a social tagging
website. It is shown that “bigbang” (an American sitcom)
exposed two bursts in Jun 2008 and Jun 2009. “Android”,
a mobile OS from Google first caught eyes because of the
release of “Android” G1 phone in Sep 2008; and in 2009, it
attracted more and more attention due to the popularity of
“Android” phones and several OS updates.

There is an growing interest in the real-time property of
social web (MacManus 2009). By identifying these events
and the associated social media content, we can realize and
improve various kinds of search and engagement experi-
ence, e.g., what are hot buzz words now, what are users’
sentiments about a company or product and how is a spe-
cific topic evolving.
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Figure 1: Temporal pulse of social media content

A great deal of influential web applications, including
Flikr, Youtube, Twitter and Delicious allow users to label
posts with arbitrary keywords, also known as “tags”. Exam-
ples include content tag in Youtube and Delicious, geo tag
in Flickr and hashtag in Twitter’s tweet. These tags facilitate
easy description and annotation and enjoy dramatic increase,
now coined as “folksonomy”.

Figure 2: Tag, user and post in folksonomy

Fig 2 illustrates this tagging interaction. Users, tags and
posts are three key components in aforementioned social
media applications. Over a timeline, users bookmark posts
with tags and form a network by connection to others. As
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a concept/topic layer, social tags link the user and content
together. These social annotations are user-perspective de-
scriptions of the web content, as well as good indicators of
users’ interests.

Though having high potential, UGC is inherently noisy
and varies in quality. Compared with traditional corpus,
UGC bars easy extraction of semantic meanings or under-
lying events. First, it is short in text description. Comments,
community QnA, tweets are usually short sentences. Book-
mark tags are even merely keywords. Second, it is inherently
heterogenous in data types. Besides the textual data, photo,
music and pages are also attached and connected. At last,
as a collaborative environment, spamming and cheating are
unavoidable. In social systems, things are popular because
they are popular, so frequency is not always the best thing to
indicate the content quality or other evaluation.

While bringing great challenges, it also exhibits rich asso-
ciated context not found previously. Specifically, social me-
dia content has a wealth of surrounding features, e.g., tem-
poral evolution, user network and contributed annotations.
In this paper, we are interested in how to effectively detect
events from social media content, especially “folksonomy”
data.

Our work in this paper can be viewed as an extension of
burst detection from temporal stream. In the traditional burst
event detection tasks, the objective is to detect events from
a temporally ordered stream of documents. Though there
exist various previous algorithms and seminal work, multi-
ple stream burst detection has not been investigated. To best
of our knowledge, the combined extraction of bursts from
social media stream has not been discussed yet.

By incorporating the temporal and social context in the
burst detection, the quality and novelty of detected bursts
can be improved. Not only can we extract events more accu-
rately, but also uncover relations between the detected events
and the interaction between content and users. This brings
out new opportunities, e.g., burst-aware correlation discov-
ery and temporal related ranking retrieval. Our contributions
in this paper are listed as follows:

• Investigate dynamic characters of social context: We
present temporal and social aspects of folksonomy data
and discuss the indications to burst detection.

• Utilize a robust burst detection model : We apply a semi-
nal burst detection algorithm, and extend it into the social
media stadium.

• Propose a learning based burst detection framework: We
investigate how to combine various indications of bursts
into a learning model.

• Experiment on a large real-world dataset: We conduct
experiments on a large dataset, demonstrating the effec-
tiveness and applicability of our proposed approach.

The rest of this paper is organized as follows. We first dis-
cuss the problem definition and data characters in Section 2.
Section 3 presents the burst detection model. Empirical re-
sult is shown in Section 4. We review related work in Section
5 and finally conclude this paper.

2 Temporal and Social Characters

2.1 Preliminaries

We begin with a brief feature definition in folksonomy used
in this paper. In tagging systems, a tagging action could
be represented as a quar-partite structure < u, T, p, d >,
where user u bookmarked a post p with several tags T =
{t1, t2, . . . , tm} at date d.

A large amount of tags are created for various types of
data, e.g., video, image and web page. There is some re-
cent work, utilizing tags to profile the temporal dynamics
of social media content (Dubinko et al. 2006; Rattenbury,
Good, and Naaman 2007). In a sequence of non-overlapping
time intervals, (x0, x1, . . . , xN ), usually only the frequency
of each tag is selected to identify the bursty tags and related
events.

As we have discussed in Section 1, this kind of single
stream is not sufficient for social media content. There are
also interactions among tags, posts and users (Fig 2). Posts
have temporal attached information, e.g., it is first book-
marked or has been posted for several times. Users follow
others based on friendship or common interests, forming a
user community. We utilize user and post information to il-
lustrate tag dynamics.

2.2 Time-aware Post Coverage

A post has its lifetime. In its initial stage, it is fresh and
may be attractive. Gradually, pages decay and lose inter-
ests of users. For a tag t, in the specific time interval xi,
there are totally n posts tagged with t by some users. ni(t)
measures the post coverage of t at xi. Usually, ni(t) could
be measured by all the posts, ignoring each post’s lifetime
and freshness. Simply counting the posts of a tag cannot
include post temporal information. Posts of a tag should
have different weighting schemes, based on their frequency
or freshness.

Here we add the time aspect into the post coverage mea-
surement. We notate the original posts firstly posted in time
interval xi as newi(t). More recently created posts should
have a high priority, in contract to older ones with a low
score. We utilize a decaying equation to include the previ-
ous m intervals of tag t in the following equation:

covi(t) = β × newi(t) + (1 − β) × newi−1(t)

+ . . . + (1 − β)m × newi−m(t)
(1)

For all posts tagged by t in interval i, we weight them by
their first posted date. Observe that the above equation in-
cludes an exponentially decaying average of posts. It tracks
the time changing behavior of a tag through the life span of
all tagged posts, and parameter β is used to retain enough
old post information.

By incorporating this time-aware coverage, we select
fresh content from old ones and also maintain old but im-
portant posts. The above equation is general, and we could
easily change it to support other time drifting criterion.

2.3 Expertise-based User Attractiveness

Though social media promotes a flat and collaborative com-
munity, users are not the same. There are spamming or noisy
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users to hazard the system and also exist authoritative users
with lots of followers. A tag could be posted by various
users. In a specific time interval, if a tag is used by more
authoritative users, this tag may exhibit an attractive burst.
Because the followers are “waiting” to bookmark this tag
later.

One user following another in social media is analogous
to one page linking to another on the Web. Both are a form
of recommendation. The following relationship earns repu-
tation and then gives reputation. More fans of a user, more
authority he/she is. More authoritative of his/her fans, more
authoritative he/she is. The user network enables the infor-
mation flow from the discoverer to followers. (Noll et al.
2009) reported that popular users bookmark frequently and
tend to be one of the first users to bookmark a new web page.

From the perspective of user, we name this attri(t) as the
temporal attractiveness of tag t at i. To evaluate tag temporal
dynamics from user perspective, we resort to take the user’s
authority information into consideration.

As there are also spamming users, simple posting active-
ness or fan count cannot capture the quality of users. An
intuitive choice is resorting to a network authority method.
Here we utilize the user’s natural following network to as-
sess user expertise.

We choose HITS algorithm (Kleinberg 1999; Noll et al.
2009) to extract the authority of a user auth(u) based on the
user network in the social community.

The attractiveness of a tag t is measured below:

attri(t) =

U
∑

u=1

auth(u|t). (2)

For simplification, we let auth(u|t) = auth(u). A global
user authority is used to measure every tags. A tag person-
alized user authority is an ongoing work.

3 Burst Detection Framework
After the above discussion of several features in social burst
detection, here we present our burst detection framework.
The motivation in this paper is to combine multiple burst in-
dications to better detect burst events. The proposed burst
detection approach follows a learning based ensemble. It is
explicitly intuitive and easy to guide the training/evaluation
process. Therefore the deployment of this model is guaran-
teed.

Given features extracted as input, we divide the detection
task as a two-step approach. We first identify bursts from
each temporal feature separately, which copes with the in-
herent nature of social media well. Here we describe a burst
detection method using a seminal Hidden Markov Model.
And then we employ a guided learning model to merge these
preliminary results from all feature sources.

3.1 Robust State based burst detection

Given a temporally ordered sequential tag stream, mining
burst or anomy intervals of this tag is an important work
in sequential mining or statistical analysis. Inspired by the
seminal work in (Kleinberg 2002), we formalize this prob-
lem as an optimal state extraction. It profiles a slower base

state corresponding to the average rate of appearance of the
word, while a burst state corresponds to a faster burst rate.

For a specific tag t, assuming there are N time intervals
in total, with tag frequency X = (x1, x2, . . . , xN ), we need
to find an optimal state sequence q = (q1, q2, . . . , qN ). qi

represents whether or not interval i is in burst.
In a binary state model, two states are used: “stable” and

“burst” respectively. When the state model A is in stable
state , tags are posted in a slow rate, with gaps x between
consecutive tags posted independently according to a den-
sity function f0(x) = β0e

−β0x. This density function fol-
lows the common Poison distribution. In unusual burst state
, tags are posted in a faster rate, f1(x) = β1e

−β1x, where
β1 > β0.
A changes state with probability p, remaining in its cur-

rent state with 1 − p. This state change is independently of
previous tag posting actions, thus Markov memoryless.

A sequence q induces a density function fq over se-
quences of gaps, which has the form: fq(x1, x2, . . . , xN ) =
∏N

i=1 fi(xi). Due to the space constraint, we omit the proof
here. The optimization problem is equivalent to finding a
state sequence q that minimizes the following cost function:

c(q|x) = b ln(
1 − p

p
) + (

n
∑

t=1

−lnft(xt)) (3)

where b denotes the number of state transition in q, i.e., the
number of indices i, so qi 6= qi+1.

By minimizing the above cost function, we achieve the
goal that both let the state sequence fit well to the tag posting
rate and minimize the change cost from one state to another.
The dynamic programming algorithm could be used to de-
rive the optimal state sequence which minimizes the overall
state cost.

The burst state extraction process is mainly composed
of two stages: a forward step to calculate all possible fij ,
pathij and a backward one to retrieve the optimal state val-
ues for each interval, where fij is the current minimum value
of c(q|x) when interval i is in state j(j ∈ 0, 1) and pathij

records the previous interval(i−1)’s state when current state
is j.

Though a hierarchial multi-state model is also discussed
in (Kleinberg 2002), it is complex and computationally ex-
pensive. To fit into our problem, we choose the basic two-
state burst model and add an external step to compute the
burst degree confi, i.e., in a specific interval, how much con-
fidence do we have about its burstness?

As the path selection in dynamic programming is back-
ward, we need to know the state selection of interval i + 1
before we determine the state of interval i. Thus, it is rea-
sonable for us to define the following intuitive metric:

confi =

{

c0−c1

c0+c1

, c0 > c1

0, otherwise
(4)

where cj is the cost value of interval i + 1 when interval
i is in state j. Our consideration is that in the backward
procedure, when state i + 1 is determined, state i is to be
determined according to the difference of c0 and c1. There-
fore, we normalize the difference of c0 and c1 to represent
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our confidence to say state i is burst. In the backward step of
dynamic programming, every interval’s burst weight is also
calculated.

The outline of extraction process is listed in Algorithm 1.
At the beginning, three model parameters need to be ad-
justed manually: the low tag posting rate β0, the high one
β1, and the state change probability p.

Algorithm 1 Optimal Burst State Extraction

Input: a specific tag frequency sequence in N time intervals
Input: parameter β0, β1 and state change cost:p
Output: burst weight sequence: conf1,conf2,. . . ,confN .
Step 1: for each interval i between 0 and N
calculate fij and pathij iteratively.
end for
Step 2: determine burstN and the burst confidence confN

Step 3: from interval N − 1 to 0, for each i,
determine the burst/stable state bursti, also output the burst
confidence confi

end for
return the burst weight sequence.

The algorithm is robust and able to persist through noise
and unstable situation. The added confidence weight also
improves the mixture framework which we will discuss later.

3.2 Mixture model from multiple burst sources

In Section 2, we investigated three features (tag itself, user
and post) to measure a tag temporal variation and Section 3.1
presents a burst detection approach for each single stream
separately. Here we discuss how to combine these indicants
together to improve the overall accuracy of burst detection.

Integrating multiple sources of feature is an important
problem for many Web applications. There exist lots of
manually tuning or unsupervised parameter tuning methods
to resolve this. Due to the heterogenous nature of social me-
dia, here we select a learning based mixture model to com-
bine these pulse information.

Guided by an input ground truth, Rankboost (Freund et
al. 2003) is a method of producing prediction rules by com-
bining many “weak” rules which may be only moderately
accurate. For each individual ranker, a function fi is gener-
ated to map an instance xi to R. These given mappings are
called ranking features. Here, all time intervals of a specific
tag form an instance space χ and R is regarded as the rank-
ing space. We regard the three features: tag, user and post as
“weak” ranking rules. From these preliminary burst detec-
tion results, we are able to get a mixture result with higher
quality.

For a specific tag t, with the given burst truth, the detec-
tion loss is defined as follows:

rlossD(H, t) =
∑

x0,x1

Dt(x0, x1)δ(Ht(x1) ≤ Ht(x0))

Dt(x0, x1) = c · max(0, Φt(x0, x1)) (5)

where H is the sum combination of all individual rankers,
and δ(π) is 1 if π holds and 0 otherwise. Φ(·) is the feedback
function, Φ : χ×χ → R, usually generated by ground truth

or user labeling. If time interval x1 is more bursty than x0,
then Φ(x0, x1) > 0.

As proved in (Freund et al. 2003), the ranking loss of H
satisfies:

rlossD(H) ≤

T
∏

t=1

Zt

Zt =
∑

x0,x1

Dt(x0, x1)exp(αt(ht(x0) − ht(x1))) (6)

where ht is the output of the tth individual ranker.

For each training tag instance with its corresponding la-
beled burst time interval sequences, we get a combination
of weighting parameters α1. . .αK to tag, user and post sep-
arately. The learning process is described in Algorithm 2.

Algorithm 2 Rankboost-based Multiple Feature Mixture
Burst Detection Model for a Specific Tag

Input: the user annotated burst ground truth for this tag t:
x01, x02, . . . , x0N .
Input:preliminary burst detection results of K = 3 features
(tag, user and post): x11, x12, . . . , x1N ; x21, x22, . . . , x2N

and x31, x32, . . . , x3N .

Output: the final ranking list H(x) =
∑T

t=1 αtht(x) with
the α parameters.
Initialize: D1 = D(based on the ground truth x0i).
Ensemble: for k = 1, . . . , K . do

• train individual learner using distribution Dk.

• get individual ranking hk from the kth ranking features.

• update this individual ranking’s weight: αk based on the
third method in Sec 3.2 (Freund et al. 2003).

• update Dk+1(ti, tj) =
Dk(ti,tj)exp(αk(hk(ti)−hk(tj)))

Zk

where Zk is a normalization factor(chosen so that Dk+1

will be a distribution).

end for
return parameter list;

By averaging over all the tags from the training set, we
get an overview mixture burst detection model with learned
parameters.

4 An Experimental Study

In this section, we compare the proposed approach with
those commonly used algorithms on a real world dataset.
Extensive experiments are conducted to evaluate the perfor-
mance and extensibility of the burst detection algorithm.

4.1 Data Collection & Evaluation Method

We use a Delicious.com corpus with 51 million bookmarks,
crawled by our group. We randomly choose 0.2 million
users and collect their complete tagging history in 2008–
2009. Every user’s network/subscription pages is also col-
lected. These raw pages are about 640G in size. We extract
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these records and bulk them in MySQL 1, Lucene 2.

To remove low frequency tags, we only consider tags with
frequency larger than 20 in any time interval. Month and
week are selected as basic time interval granularity. After
this kind of preprocessing, there are about 0.1 million tags
in all.

The burst detection is to find all burst periods of a query-
ing tag or present top burst tags in a specific time period.
There exists no common ground truth for burst detection
problem. We resort to user study and choose 50 tags for
evaluation. These tags are chosen based on the frequency
and burst activity randomly. Some of the labeled bursts in-
clude tags in Fig 1 and “nobel”(Nobel Prize), “halloween”,
“SWSX”(annual conference on emerging technology).

Three volunteers are involved in this manual judgments.
Each of them was asked to label the burst periods of a spe-
cific tag, by referencing several real world repositories, i.e.,
Google Trends 3, Yahoo! Upcoming 4.

Each burst detection approach will generate a bi-
classification or ranked list of time intervals. Based on
the above labeled ground truth, we propose some IR style
measurements for qualitatively comparison between differ-
ent methods, which are MAP, R-precision, and Top N preci-
sion (P@N).

4.2 Effectiveness

We compare the approach with four baseline methods to
demonstrate the effectiveness. Three are single stream based
state detection models discussed in Section 3.1 applied on
separate features: tag frequency, time-ware post weighting
and user attractiveness. The last one is a linear combination
of three features and then goes through the state detection
model.

We experiment different interval granularity as month and
week. It turns out that the smaller granularity can locate
burst to more accurate level while more sensitively affected
by noise.

For the proposed methods, three weak detectors are
trained by tag frequency freqit, time-aware coverage covit
and user attractiveness attrit in each state detection model
separately. Then these weak detectors are combined by
Rankboost based learning, given the user labeled truth.

We conduct experiments with different values for state
change cost p and the two-state automaton parameters in Al-
gorithm 1. We set average arrival rate β0 the total post num-
ber in a time interval divided by the total time spanned in
the time interval. After several tempt, we manually choose
β1 = 1.5β0 and p = 0.49.

In our proposed approach, we apply 5-fold cross-
validation experiments. In each trial, the parameters α0,
α1 and α2 are auto-generated in the Algorithm 2 with four
of the five subsets as training-set and the remaining one as
testing-set. The parameters in linear combination are tuned

1
http://www.mysql.com

2
http://lucene.apache.org

3http://www.google.com/trends
4
http://upcoming.yahoo.com

manually on the whole dataset and reported best perfor-
mance.

The result is summarized in Table 1. We can see that our
approach by aggregating features performed better than any
other methods in all measurements.

methods P@10 R-Precision MAP
Tag Frequency 0.33 0.65 0.71
Post Coverage 0.32 0.54 0.64

User Attractiveness 0.32 0.6 0.68
Linear Combination 0.33 0.66 0.73

Our Approach 0.39 0.68 0.77

Table 1: Tag burst detection performance

Figure 3: Tag burst detected from three single features

Comparison with single features In single feature group,
tag frequency based burst detection performs well. It is in-
tuitive to understand this common sense, as our purpose is
to find the burst of tags which is related to certain real world
events. It is also interesting to find that the performance
of our introduced new burst dimension, i.e., Post Coverage
and User Attractiveness, is also comparable. It proves the
effectiveness points of view stated in Section 2.2 and 2.3.
The following two combination methods both have improve-
ments compared with single feature baselines. This indi-
cates that, the three features are generally complementary
and contribute to burst detection.

Comparison with linear combination of multiple fea-
tures Our approach shows an improvement over the lin-
ear combination, though not significantly. First, we report
the best performance of linear combination, which is some-
what overfitting. Second, the learning based approach is
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guided and provides intuitive results. In contrast, the param-
eters in the fusion step are difficult to learn automatically.
Real bursts only reflected from unique feature is more eas-
ily smoothed in the simple linear aggregation process than
Rankboost.

Qualitative Example “Chrome” is used by Google to
name its web browser and net OS 5. In Fig 3, we present
the bursts detected by three individual features. All three
detect the burst of “chrome” in Sep 2008 when Google
launched its web browser. In 2009, several comparatively
small events were recorded on Google Trends 6, such like
Google launched browser experiments in March, net OS was
introduced on June and browser 3.0 was released in Sep.

All features captured some events while losing others or
even detected bursts which do not refer to any real world
event.By combination of these individuals, the mixture de-
tection model could effectively identifies the real bursts.

5 Related Work

The generation of UGC and temporal dynamics is of grow-
ing research interest (Agichtein et al. 2008; Baeza-Yates
2009). The comparison between tags and query log are dis-
cussed in (Carman et al. 2009). Three properties of folk-
sonomy, namely the categorization, keyword, and structure
property, are explored to support search (Xu et al. 2008).

Temporal aspects of social media are also exploited, e.g.
visualization of a single tag stream in (Dubinko et al. 2006),
a spatial clustering based event extraction in (Rattenbury,
Good, and Naaman 2007), and a multi-step clustering and
partition approach (Zhao, Mitra, and Chen 2007). In our
previous work (Yao et al. 2010), we discussed how to better
detect tag burst from tag co-occurrence information. Work
in this paper extends these and investigates additional char-
acters.

There has been lots of work in both burst detection and
temporal text streams. A common approach for event detec-
tion is to identify bursty features from a document stream.
Features sharing similar bursty patterns in similar time pe-
riods are grouped together to describe events and determine
the periods of the bursty events.

There are typically two typical types of burst detection ap-
proaches, i.e., threshold based and state based methods. The
threshold method is efficient though not adaptive. Klein-
berg’s “burst of activity model” (Kleinberg 2002) uses a
probabilistic infinite-state automaton to model the dynamic
change. These traditional methods usually only consider
one single stream, which is limited in social media content.
Though there are some recent works investigating multiple
stream alignment (Wang et al. 2007), the noisy and het-
erogenous social media features prohibit the application of
these traditional models. The detection model used in this
paper improves the seminal ones.

5http://www.google.com/chrome
6http://www.google.com/trends?q=chrome

6 Conclusion

In this paper, we present a novel approach to detect burst
by combining multiple burst features. By introducing more
dimensions of features, we can not only improve the effec-
tiveness of burst detection, but also make the temporal cor-
related and proximity mining possible. Though the setting
and empirical analysis in this paper is based on folksnomy
data. The discovered characters and developed methods are
general and applicable across other social media content.
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