
 
Materializing and Persisting Inferred  

and Uncertain Knowledge in RDF Datasets 
 

 James P. McGlothlin, Latifur Khan 
The University of Texas at Dallas 

Richardson, TX USA 
{jpmcglothlin, lkhan} @ utdallas.edu 

 
 
 

Abstract 
As the semantic web grows in popularity and enters the 
mainstream of computer technology, RDF (Resource De-
scription Framework) datasets are becoming larger and 
more complex. Advanced semantic web ontologies, espe-
cially in medicine and science, are developing.   As more 
complex ontologies are developed, there is a growing need 
for efficient queries that handle inference.  In areas such as 
research, it is vital to be able to perform queries that retrieve 
not just facts but also inferred knowledge and uncertain in-
formation.   OWL (Web Ontology Language) defines rules 
that govern provable inference in semantic web datasets.   In 
this paper, we detail a database schema using bit vectors 
that is designed specifically for RDF datasets.  We introduce 
a framework for materializing and storing inferred triples. 
Our bit vector schema enables storage of inferred knowl-
edge without a query performance penalty.  Inference que-
ries are simplified and performance is improved.  Our 
evaluation results demonstrate that our inference solution is 
more scalable and efficient than the current state-of-the-art.  
There are also standards being developed for representing 
probabilistic reasoning within OWL ontologies.  We specify 
a framework for materializing uncertain information and 
probabilities using these ontologies.  We define a multiple 
vector schema for representing probabilities and classifying 
uncertain knowledge using thresholds.  This solution in-
creases the breadth of information that can be efficiently re-
trieved.  

 Introduction   

The World Wide Web Consortium (W3C) defines the RDF 
data format as the standard mechanism for describing and 
sharing data across the web.   All RDF datasets can be 
viewed as a collection of triples, where each triple consists 
of a subject, a property and an object.  OWL inference 
rules allow queries and users to deduce additional knowl-
edge from known facts.  The goal of our research is to im-
prove the efficiency and scalability of this information 

                                                 
Copyright © 2010, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

retrieval.  The core strategy of our research is to apply all 
known inference rules to the dataset to determine all possi-
ble knowledge, and then store all this information in a rela-
tional database.  Inference is performed at the time the data 
is added rather than at query time.  All possible knowledge 
is materialized and persisted.   
 The simplest way to store RDF data in a relational data-
base is to simpy create a three column table of RDF triples.  
However, research shows this is not the most efficient so-
lution.  Many alternative solutions have been proposed 
including vertical partitioning (Abadi et al., 2007), sextuple 
indexing (Weiss, Karras & Bernstein, 2008), and RDF-3X 
(Neumann&Weikum, 2008).  None of these solutions store 
inferred data or address the task of querying inferred 
knowledge.  Inference queries against these databases re-
quire detailed knowledge and encoding of the ontology 
logic, and require unions and joins to consolidate the in-
ferred triples.  There are existing solutions that perform 
inference in memory, providing simpler queries.  There are 
even solutions which support inference and relational data-
base storage, but they have fixed schema and do not sup-
port customized tables for efficiency.  Such solutions pay a 
large query performance penalty due to  increasing the 
dataset to include the inferred triples.  We support infer-
ence at storage time combined with efficient database 
schema in a manner that not only simplifies queries but 
also improves performance and scalability.  Our evaluation 
results show that our solution consistently outperforms the 
current state-of-the-art solutions for RDF storage and que-
rying. 
 Our design relies on adding inferred RDF triples to the 
dataset.  This would not be a viable solution unless these 
triples can be added and stored without increasing the per-
formance cost of queries. We have designed a bit vector 
schema that can store these triples with negligible impact 
to query performance.  Our bit vectors enable joins and 
unions to be performed as bitwise operations, and our in-
ference materialization reduces the need for subqueries, 
joins, and unions at  query time.  The end result is that 
query performance is improved. 

1405

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



 There are many motivations for storing uncertain infor-
mation in semantic web repositories. The W3C Uncertainty 
Reasoning Incubator Group (URW3-XG) final report 
(2008, http://www.w3.org/2005/Incubator/urw3) defines 
14 motivating use cases.  There are also several proposals 
for representing probabilistic reasoning within semantic 
web ontologies.  However, there is not an existing solution 
for storing the data and providing efficient queries.  We 
present a framework for storing uncertain information and 
probability data.  We materialize all inferred triples at addi-
tion time, even those involving probability.  Every triple is 
persisted including its probability and an explanation of 
how it was inferred.  We then define a multiple bit vector 
schema involving thresholds that will allow us to effi-
ciently query this information and probabilities.  Our con-
tribution is that once the probabilities are calculated they 
can be persisted and made available for efficient querying. 

Schema 

In this section, we define our schema and tables.    Figure 1 
shows the process flow between tables.  In this diagram, 
tables are represented by boxes with double lines.  Actions 
that can change the data are represented by solid arrows.  
Actions that only query data are represented by dashed 
arrows.   

Figure 1: Process flow between tables 
 
 As this diagram shows, all additions and deletions are 
performed against the triples table.  Therefore, this table is 
our data management schema.  All queries are performed 
against our bit vector tables (POTable and PSTable), which 
provide our query schema.  These tables and the process 
flow are described in detail in the following subsections. 

Triples Table 
We separate the schema exposed to the user from the 
schema used for queries.  The most natural and common 
schema for RDF datasets is a triples table with columns for 
subject, property and object.  Therefore, we provide such 
as table.  This is the only table exposed to the inference 

rules and all user additions, deletions and updates are per-
formed against this table.  The triples table allows us to 
encapsulate our schema and to optimize processes for 
pushing updates across our bit vector tables.   
 The triples table also allows us to associate additional 
data with a triple.  We have additional columns for prob-
ability, inference count, and inference origin.  These col-
umns are hidden from the user and managed by the infer-
ence engine.  We use these columns to support deletion of 
inferred triples, to support explanation annotations, and to 
calculate probabilities.   
 One of the drawbacks of materialization is that material-
ized information is redundant and thus extra maintenance 
is required.  Therefore, materialized information is gener-
ally read-only.  We avoid this by making our bit vector 
tables read-only to the user but not to the system.  We sup-
port both additions and deletions to the dataset via the tri-
ples table.  These updates trigger automatic updates to the 
bit vector tables. 
 The triples table is not an efficient schema for queries.  
Moreover, a triples table schema suffers a query perform-
ance reduction whenever the number of triples is increased.  
Therefore, this schema would not allow us to store inferred 
triples efficiently.  Therefore, the triples table is never used 
for queries.  We supply a query interface to the user that 
translates the queries into query plans against our more 
efficient bit vector tables. 

Bit Vector Tables 
We store the RDF triples in two bit vector tables: the PO-
Table and the PSTable.  Each URI or literal is dictionary-
encoded to a unique ID number.  These ID numbers then 
are used as indices into our bit vectors.  
 The POTable includes five columns: the PropertyID, the 
SubjectID, the SubjectBitVector, the BitCount, and the 
Threshold.  The SubjectBitVector has a 1 for every subject 
that appears with that property and object in a  RDF triple.  
For example, all subjects matching <?s type text> can be 
retrieved from a single tuple and returned as a single bit 
vector, indexed by the ID numbers. The BitCount is the 
number of on bits in this vector.  This column is used to 
support aggregation queries and to provide statistics used 
in our query optimization.  The Threshold is used for que-
rying uncertain knowledge associated with probabilities.  
Our threshold solution is explained in detail later in this 
paper.  The PSTable contains four columns: the Prop-
ertyID, the SubjectID, the ObjectBitVector and  the Bit-
Count.   
 One of the key advantages of our bit vector schema is 
the capacity to use bitwise operations to perform joins.  An 
RDF dataset can be viewed as one large three column tri-
ples table.  In fact, this is the most natural schema, as we 
have already illustrated.  Thus joins between triples are 
recursive joins against the same table, and there is little 
selectivity factor information available for query planning.  
Many semantic web queries involve many such joins, so 
they are often the bottleneck in query performance.  Our 
BitCount information provides the missing selectivity fac-

1406



tor information.  More importantly, we can now perform 
many joins as efficient and and or operations.  For exam-
ple, consider the query "List all professors at University0".  
This can be performed by retrieving two bit vectors from 
POTable - one for property=type, object=Professor and one 
for property=worksFor, object=University0 - and then per-
forming the and operation between the vectors. 
 The  bit vectors are also the reason we are able to store 
inferred triples at little or no cost.  The length of the bit 
vectors is equal to the max(ID).  Each and every unique 
subject or object URI or literal in the dataset has a corre-
sponding bit in these bit vectors.  
 Our inference solution relies upon adding additional 
triples for all inferred knowledge.  Typical RDF databases 
incur a performance penalty for increasing the  number of 
triples in the data set.  However, except for a potential re-
duction in the achievable compression rate, our solution 
does not incur this penalty.   Instead, we incur a perform-
ance penalty only when the dataset's vocabulary is in-
creased.  Our queries experience a performance reduction  
in a linear fashion corresponding to the number of unique 
URIs and literals in the dataset.  This is because there is 
already a bit in the tables for each and every possible com-
bination of the known subjects, properties and objects.   
Many times, inferred triples will not introduce unique 
URIs at all, and if unique URIs are introduced, they are 
only unique for that ontology rule.  While an RDF dataset 
may include millions of triples, the number of unique terms 
in the ontology is generally not large.   For our experi-
ments, we utilize the LUBM (Lehigh University Bench-
mark, http://swat.cse.lehigh.edu/projects/lubm/) dataset 
with more than 44 million RDF triples.  For this dataset, 
20,407,385 additional triples are inferred, yet  only 22 
unique URIs are added by this inference.  Thus, there is no 
performance penalty for the addition of the millions of 
inferred triples, only for the addition of 22 new URI terms.  
For these reasons, our bit vector solution allows inferred 
triples to be added to the dataset at almost no performance 
cost. 
 The bit vectors can get very large.  For the Barton 
dataset (http://simile.mit.edu/wiki/Dataset:_Barton), there 
are 18,468,653 unique URIs and literals.  However, these 
vectors tend to be very sparse.  The largest BitCount for 
the Barton dataset is for type text which has 1,542,480 
matches.  Even in this case 0s out number 1s in the vector 
12 to 1, allowing for exception compression.  We use the 
D-Gap compression scheme 
(http://bmagic.sourceforge.net/dGap.html).  The key ad-
vantage to D-Gap is that bitwise operations can be per-
formed against the vectors without decompression.  Our 
results show that compressing the vectors minimizes their 
impact on memory and storage consumption. 

Inference 

Our design is to add triples to the dataset at addition time.  
Therefore, we must have a process for doing this.   One of 
our design goals is to allow each inference rule to be im-

plemented and registered separately.  Therefore, we are not 
tied to a particular ontology representation.  Another of our 
design goals is to not require the inference rule to have 
knowledge of our schema.  Therefore, our inference rules 
execute against the triples table only.  Another design goal 
is that inference rules only have to handle one level of in-
ference.  Therefore, we have designed a recursive solution.  
Another design goal is that inferred triples are properly 
deleted when the base triple is deleted.  We specify our 
solution for deletions in this section as well. 
 Figure 1 shows the process flow for inference.  When a 
triple is added the inference engine is called.  It queries the 
inference rules in order to determine, via forward-chaining, 
any additional triples that can be inferred.  These inferred 
triples are then added to the triples table, by the same add 
method as used by the user.  This cycle demonstrates the 
recursive nature of our solution.  Deletion is actually no 
different from the inference rule's perspective.  The infer-
ence rule determines the triples than can be forwarded-
chained, and then the inference engine deletes, rather than 
adds, the inferred triples. 
 Let us consider an example of how our solution works.  
Consider the triple <Professor0 type FullProfessor>. The 
LUBM ontology will allow us to infer 4 additional triples: 
<Professor0 type Professor>, <Professor0 type Faculty>, 
<Professor0 type Employee>, <Professor0 type Person>.  
Our strategy is to materialize and store all 4 inferred tri-
ples.  As Professor, Faculty, Employee and Person exist 
elsewhere in the dataset, no new vocabulary is introduced.  
Therefore, all that is required to add these triples is to 
change 0s to 1s in the bit vector.  The size of the database 
and the bit vectors is not increased.  Now, we can execute a 
query such as List all persons by reading a single bit vec-
tor.  Person has 21 subclasses in the LUBM ontology.  
Therefore, to query all persons with vertical partitioning or 
RDF-3X would require 21 subqueries and 20 unions.  
 Now, we will address the specifics for how the inferred 
triples are added and managed.  We provide an inference 
engine.  Each inference rule registers itself using Java fac-
tory methods.  Each inference rule provides a method for-
wardChain(subject,property,object).  When a triple is 
added, the inference engine iterates through the inference 
rules and gives each inference rule the opportunity to for-
ward-chain additional inferred triples based on the base 
triple being added.  The only change an inference rule can 
make to the dataset is to add more triples.  This is a recur-
sive solution.  In the above example, the subClassOf infer-
ence rule will add <Professor0 type Professor> when 
<Professor0 type FullProfessor> is added.  Then the sub-
ClassOf inference rule is executed again for the new addi-
tion, and adds <Professor0 type Faculty>. 
 We have implemented inference rules to support the 
OWL constructs subClassOf, sameAs equivalentClass, 
subPropertyOf, TransitiveProperty, SymmetricProperty, 
inverseOf, and intersectionOf.  Additionally, we imple-
mented an inference rule to support the Records inference 
relationship defined by the Barton Dataset. 

1407



 Deletions offer a special challenge for inferred triples. If 
the base triple is deleted and the inferred triple no longer 
applies, it should be deleted as well.  However, a triple 
might be inferred from more than one base triple. For ex-
ample, assume John is a graduate student and a research 
assistant in computer science at MIT. Now, John gets an 
internship at IBM, and they agree to pay for the rest of his 
education. He is no longer a research assistant or an em-
ployee and no longer works for the department. However, 
he is still a student and a member of the school, because 
these facts can still be inferred from the fact John is a 
graduate student at MIT. This problem is solved by main-
taining an inference count. John is a memberOf MIT be-
cause he works for the CS department and because he is a 
graduate student at MIT. If John stops working for the CS 
department, he will still be a member of MIT.  
 Our solution is to maintain an InferenceCount column in 
the triple table.  When a triple is added by inference, the 
InferenceCount is incremented.  When a triple is deleted, 
we rerun the inference rules as though the triple was being 
added.  However, instead of adding inferred triples, we 
decrement the InferenceCount for the inferred triple.  If the 
InferenceCount becomes 0, we delete the inferred triple. 
 There is also research in coherency theory and belief 
revision (Flouris et al., 2008) that suggests that inferred 
triples should survive the removal of the base triples.  An 
example is medical data.  We would like to gather statistics 
and make inferences across patient records.  However, for 
privacy reasons, the patient's records must be deleted from 
the dataset.  In such instances, inferred triples should not 
be removed when concrete triples are removed.  We solve 
this problem by providing two separate user functions.  
Delete deletes a triple and all relevant inferred triples, re-
move deletes only the concrete triple specified. 

Uncertainty Reasoning 

OWL has provable inference.  All inferred triples are 
known to be true with absolute certainty.  Uncertainty rea-
soning addresses the issue of knowledge that might be true.  
Our goal is to associate probability numbers with facts 
(RDF triples) and to enable queries based on probability 
conditions.  In order to make these queries efficient, our 
goal is to materialize and store the inferred facts and asso-
ciated probabilities. 
 Uncertainty is too broad a subject to claim an all encom-
passing solution.  The URW3-XG final report defines two 
kinds of uncertainty.  We wish to concentrate on the first, 
"uncertainty inherent to the data".  URW3-XG details 14 
use cases.  We looked most carefully  at use case 5.4 "On-
tology Based Reasoning and Retrieval from Large-Scale 
Databases" and use case 5.14 "Healthcare and Life Sci-
ences".  The key benefits of our solution are scalability and 
query efficiency.  Therefore, we concentrated on uncer-
tainty that appears within the data model for large scale 
databases.  We have attempted to make our design as ex-
tensible as possible, but  we are not trying to create our 
own probabilistic reasoning system.  Our contribution is 

that we allow probabilities to be stored and retrieved with 
the RDF triples efficiently.  We assert that this will enable 
scalable and efficient probabilistic reasoning systems. 

Ontology Representation 
Our OWL inference rules work under the simple logical 
concept (A B) & A �B.  The inference rule from the on-
tology represents A B, the base triple is A and the inferred 
triple is B. The only difference for our uncertainty reason-
ing solution is that we can associate a probability.  
 There is no established standard for representing prob-
ability in a semantic web ontology.  URW3-XG defines 5 
approaches to uncertainty in the web: description logic, 
Bayesian networks, first order logic, fuzzy logic and belief 
networks.  Our goal is not to restrict the ontology represen-
tation.  Therefore, as with provable inference, we allow 
inference rules to register and we call them during the ad-
dition of triples.  They check for conditionals, determine 
triples to add, calculate the probability for the inferred tri-
ples, and add this information.  As with provable inference, 
all inferred triples are materialized and stored at addition 
time.   

Schema 
Triples Table.   Our design is to support probability within 
our vectors.  However, in order to not penalize queries 
without probability, and to not absorb an unlimited amount 
of memory and storage, we need to limit the precision of 
the probabilities identified via the vectors.  Therefore, our 
design is to also include the exact probability in the triples 
table as an extra column.  Furthermore, we include an ex-
planation of the inference in the triples table.  In support of 
uncertainty reasoning, we add explanations to each inferred 
triple, whether or not it has probability.  An example of a 
triples table with this annotation column is shown in Table 
1. 

 
Table 1: Example triples table with explanation column 

Subject Property Object Prob Explanation 
Professor0 type FullProfessor 1   
Professor0 type Professor 1 subclassOf(Professor FullPro-

fessor, Professor0 type FullPro-
fessor) 

Professor0 type Faculty 1 subclassOf(Professor Faculty, 
Professor0 type Professor) 

 
Vectors. We examined two options for storing probabili-
ties within our vectors.  The first was to replace the bit 
vectors with vectors of 2 bits, 4 bits or 16 bits depending 
on the required level of precision. Known facts would be 
stored as all 1s and known non-facts as all 0s.  Uncertain 
facts would be represented as fractions between 1 and 0.  
For example, with 2 bits, we could represent probability=1 
with (11), probability=0 with (00), 0.5 >=probability >0 
with (01) and 1>probability>0.5 with (10).  We rejected 
this solution for a few reasons.  This solution would in-
crease the size of every vector whether or not it included 

1408



uncertain information.  Furthermore, it would jeopardize 
the ability to perform bitwise operations to execute joins 
and unions.  Finally, it would not make it easy to perform 
selections based on probability.   
 Instead, we adopt a multiple vector system with thresh-
old.  This solution adds a column to the POTable, the 
threshold column.  The vectors are bit vectors with 1s for 
every triple known with probability>=threshold.  For vec-
tors without probability, the threshold is 1.   Non-
probabilistic queries always use vectors with threshold=1 
and they are unaffected.  The trade-off is extra storage 
space because we will store multiple vectors with multiple 
thresholds.  However, memory consumption is reduced 
because we only need to read in the vector with the appro-
priate threshold.   

Thresholds.  Now that we have chosen the multiple vector 
approach, we examine thresholds.  Suppose we want a list 
of subjects that are likely to have lung cancer.  Inference 
rules could be based on prior conditions, tobacco use, fam-
ily history, age, employment, geography, last doctor visit, 
etc.  For every such inference rule known, we will have 
executed the inference and materialized the probability. An 
example POTable for this scenario is shown in Table 2. 

 
Table 2: Example POTable with thresholds 

Property Object Threshold SubjectBitVector Bit 
Count 

hasDisease LungCancer 1.0 1010010101001000100  7 

hasDisease LungCancer 0.9 1011010101011000100 9 
hasDisease LungCancer 0.8 1011010101011000101 10 
hasDisease LungCancer 0.7 1111010101011010111 13 
hasDisease LungCancer 0.6 1111010101011010111 13 
hasDisease LungCancer 0.5 1111010101011010111 13 
hasDisease LungCancer 0.4 1111010101011110111 14 
hasDisease LungCancer 0.3 1111010101011110111 14 
hasDisease LungCancer 0.2 1111011101011110111 15 
hasDisease LungCancer 0.1 1111011101011110111 15 

 

 We can query all of those with lung cancer (probabil-
ity=1.0) the same as we could before probability. We can 
now also retrieve all those with >0.4 chance of having lung 
cancer by reading one tuple.  We can even retrieve all 
those with >0.4 and <0.5 probability, by reading two tuples 
and executing the bitwise operation and not between them.  
These vectors can now be joined with other vectors (exam-
ple: Age over 40) using bitwise operations against the vec-
tors.    

 Also, notice in our example that the bit count allow us to 
determine how many subjects match  the probability condi-
tional without even reading the vector.  Also, notice in our 
example, the were no changes between some of the thresh-
olds.  The tuples with thresholds 0.6, 0.5, 0.3 and 0.1 can 
be deleted since they offer no new information; we can use 
the higher threshold and get the same results.  This allows 
us to save storage. 

 If a query requests a different probability, such as 0.45, 
that is not represented by a threshold, we provide a two 
part solution.  First, note this problem does not necessarily 
have to be solved.  Many ontology representations restrict 
the list of probabilities values to defined sets such as low, 
medium, high, etc. Therefore, the thresholds are known 
and every threshold can be provided a bit vector.  How-
ever, we nonetheless solve this problem for the generic 
case.  A query which wanted all those with probability of 
lung cancer > 0.45 would first query the 0.5 threshold.   
These subjects definitely belong to the result.  Then it 
would retrieve the list of subjects with probability >0.4 and 
<0.5 using the and not operation as specified above.  Fi-
nally, for each such triple it would query the triples table to 
get the exact probability.  If the probability was greater 
than 0.45 it would add the subject to the results.  Thus, the 
vectors are used for efficient selection, and the triples table 
is available for precise comparisons. 
  There are many options for setting thresholds.  In our 
example, we set the thresholds at 0.1 intervals.  However, 
our solution is to allow a user option that specifies the 
threshold interval.  The key advantage of this is that it al-
lows the user to know the thresholds and thereby specify 
the most efficient queries. 

Probability Propagation 
We propagate probabilities throughout the system based on 
the simple Bayesian logic rule that P(A)= P(A|B)*P(B).   
Therefore, inference rules for provable OWL inference 
(thus P(A|B)=1.0) add the inferred triple with the same 
probability as the base triple.  Probability inference rules 
use the same formula, thus factoring the probabilities to-
gether when the base triple is also uncertain. 

Ambiguities. Bayesian networks are a complex area of 
study.  Some facts are mutually exclusive.  For example a 
person is either male or female.  Therefore if 
P(A|Male)=0.5 and P(A|Female)=0.1  we can conclude 
P(A|Person) =0.5*0.5 + 0.5*0.1= 0.30.  However, if the 
probability of Person1 having stomach cancer is 0.1 and 
the probability of Person1 having lung cancer is 0.1, we 
cannot conclude the probability of Person1 having cancer 
is 0.2, because the person could have both.  We would 
need the probability of the person have lung and stomach 
cancer.  Furthermore, we need to handle non-monotonistic 
reasoning, such as the classic penguin example.  Even 
though birds have a 0.95 probability of flight ability and a 
penguin is a bird, the penguin overrides this probability by 
specifying penguins have a 0.0 probability of flight ability.    
 We wish an architectural framework that allows decisive 
solutions to such ambiguities.  Therefore we support a con-
flict handler.  In addition to the forwardChain method, the 
inference rules can register a resolveProbability method. 
When an inferred triple already exists, and an inference 
rule attempts to add the same triple with a new probability, 
resolveProbability. is executed to determine the final prob-
ability.   The explanation column of the triples table helps 
us implement conflict handlers.  For example, a conflict 
handler can choose the probability that has the shortest 

1409



inference path to a concrete triple.  This would support 
override behavior such as the penguin example. 
 Here is a generic example of probability resolution.  
Consider an ontology that defines two rules P(A|B) and 
P(A|C).  Now, the user adds triple B to the dataset.  The 
inference engine will forward-chain triple A and add it to 
the dataset with a probability, P(A|B).  Now, the user adds 
triple C to the dataset.  The inference engine will forward-
chain A and attempt to add it with P(A|C).  However, A 
already exists with P(A|B).  Therefore, resolveProbability 
will be called to determine the probability of triple A.  For 
example, an inference rule can be implemented using the 
Bayesian reasoning technology from BayesOWL (Zhang et 
al., 2009).  This inference rule can then use the Bayesian 
network to determine P(A|B^C) which in fact is the final 
probability of triple A. 
 Our goal in this framework is not to solve such ambigui-
ties anymore than it is to define ontology representations.  
Significant research already exists in these areas, and our 
design is to allow these solutions to be implemented within 
our framework. The contribution of our work is that once 
the probabilities are calculated they can be persisted and 
made available for efficient querying. 

Evaluation Results 

We identified two large dataset benchmarks used in other 
evaluation research: LUBM  and the Barton Dataset. 
LUBM is a synthetic dataset for a university domain.  We 
created a database using the LUBM dataset with 400 uni-
versities and 44,172,502 tuples.  The Barton Dataset is an 
RDF representation of MIT's library catalog.  There are 
over 50 million unique triples in the Barton Dataset. 
 LUBM has a well-defined OWL ontology which ex-
presses a large number of inference rules.  LUBM defines 
14 test queries, and 12 of those 14 queries involve infer-
ence. Barton Dataset has 12 queries as specified in the 
evaluation paper by Sidirourgos at al. (2008).  Barton 
Dataset only defines one inference rule, and only 3 of the 
queries involve inference.   For our analysis, we will spec-
ify summary information about all the queries, and specif-
ics only about some of the queries involving inference.  
 All of our experiments here were performed on a system 
with an Intel Core 2 Duo CPU @ 2.80 GHz, with 8GB 
RAM.  We used the MonetDB (http://monetdb.cwi.nl/) 
column store database for our persistence.  We ran both hot 
and cold runs, and used the 64-bit Ubuntu 9.10 operating 
system.  
 In prior research, the approach has been to either avoid 
the queries that include inference or to support these que-
ries by translating them into unions of subqueries without 
inference.  We support these queries as defined, without 
requiring the query to have any knowledge of the infer-
ence. There is no high-performance solution with inference 
that uses relational databases for RDF datasets.  It seems 
uninformative to compare our results with solutions that 
access and parse RDF documents directly, and the per-
formance of such tools is slower by many orders of magni-

tude.  Therefore, we compare with vertical partitioning, 
RDF-3X and triple store solutions.  None of these solutions 
provides automated support for inference.  Instead, the 
query implementation requires specific knowledge and 
encoding of the ontology logic.  These queries require a 
minimum of 4 subqueries and 3 unions, and a maximum of 
29 subqueries.   However, we also tested adding the in-
ferred triples to the datasets in these solutions.  While this 
did simplify the queries, it actually reduced the query per-
formance.  This is because these schemata pay a perform-
ance penalty for increasing the size of the dataset. 
 Our solution outperformed RDF-3X, vertical partition-
ing and triple store solutions for all 14 LUBM queries.  For 
Barton Dataset, our solution achieved the best performance 
for all 12 queries on cold runs, and for 11 out of 12 queries 
on hot runs.  This includes all 3 inference queries, and we 
achieved the greatest performance improvement for these 
queries.   This demonstrates the viability of our inference 
materialization solution. 
 The complete query time across all 14 LUBM queries 
for our solution was 8.1 seconds.  Vertical partitioning 
required 68.8 seconds, RDF-3X 22.7 seconds, and triple 
store (with SPO ordering) 113.9 seconds.   Summary statis-
tics for Barton Dataset are included in the Table 3.  PSO 
indicates a triple store solution, sorted by property, subject, 
object, and implemented with MonetDB.  SPO indicates 
the same solution sorted by subject, property and object.  
We achieved the best average query time for both hot and 
cold runs.  In this table. our solution is labeled MBV for 
"materialized bit vectors" .  

Table 3: Average query times (in seconds) for Barton 
dataset 

 MBV RDF-3X VP PSO SPO 
Average(hot) 1.02 1.76 3.53 3.28 4.12 
Geo. Mean(hot) 0.72 0.97 2.01 2.21 3.21 
Average(cold) 1.54 4.10 4.68 4.51 5.68 
Geo. Mean(cold) 1.08 3.24 3.41 3.67 5.07 
  
We will now provide details for one LUBM query and one 
Barton query. 
 
LUBM Query 5 
List persons who are members of a particular department  
This query invokes five kinds of inference rules: subClas-
sOf, subPropertyof, inverseOf, TransitiveProperty and in-
tersectionOf.  There are 21 classes in the Person hierarchy 
in the LUBM ontology.  In the LUBM dataset, there are 
instantiations for 8 of these classes.  Therefore, to query ?x 
type Person using vertical partitioning or RDF-3X requires 
21 subqueries; 8 of which will return results that must be 
unioned together.  There are three different ways to express 
memberOf in the dataset.  It can be expressed directly with 
the memberOf property, or through the subProperty 
worksFor, or through the inverse property member. The 

1410



range of the memberOf property is type Organization 
which is affected by the transitive property subOrganiza-
tionOf.  So it is necessary to query if the subject is a mem-
berOf or worksFor any entity that in turn is a subOrganiza-
tionOf  the department.   Transitive closure is not limited to 
a single level, therefore it is necessary to repeat this loop 
until the organization does not appear as a suborganization.   
 Our solution materialized the inferred triples at addition 
time so our query does not need to address this inference 
logic.  We implement this query by simply retrieving the 
bit vector from the POTable for property=type, ob-
ject=Person, retrieving the bit vector from the POTable for 
property=memberOf, object=Department0, and then exe-
cuting the bit operation and between these two bit vectors. 
We are able to perform this query for the 44 million triples 
dataset in 0.23 seconds.  The next best solution, RDF-3X, 
requires 2.88 seconds and vertical partitioning requires 
6.28 seconds.  
 
Barton Dataset Query 5 
This query defines a simple inference rule: (X Records Y) 
& (Y Type Z)  (X Type Z). The query lists the subject and 
inferred type of all subjects with origin DLC. 
 We implemented and registered this inference rule. 
Thus, the type of X is determined at add time and stored in 
the database. This simplifies the query, eliminating a 
subquery. Our query engine implements this query using 
the PSTable and the POTable. Our cold run time, 0.41 
seconds, was faster than all other solutions by a factor of 4.   
Our hot run time, 0.21 seconds, was faster by a factor of 2. 
This clear performance improvement shows the viability of 
our inference solution. 

Uncertainty Reasoning Results 
For uncertainty reasoning, we have not yet been able to 
identify a benchmark dataset and ontology to evaluate our 
solution for scalability and efficiency.  We have tested with 
ontology representations using BayesOWL and description 
logic (Pronto, http://pellet.owldl.com/pronto).   We have 
used example datasets and small ontologies to validate our 
solution for correctness.  
 We have also created our own simple experiments.  We 
added an arbitrary property to LUBM with probability. We 
defined it as property='”has” and object=”possible”. We 
did not create an inference rule, we simply randomly as-
signed 1,000,000 subjects of type Person has possible with 
probabilities randomly assigned between 0 and 1. Then, we 
changed LUBM Query 1 to add “and has possible prob-
ability >=0.4.” The query times for LUBM Query 1 were 
all less than 2ms slower than the query time without prob-
ability. As our LUBM query time was more than 2ms 
faster than all other solutions, this allows us to conclude 
that our probability solution is also faster. 
 In addition, we created our own test dataset. We defined 
inference rules that determine the probability that a person 
will develop skin cancer. We defined rules based on family 
history, number of moles, hair color, age, sex, exposure to 

sun, previous burns, and previous cancer history, using 
statistics obtained from the Internet. We then created arbi-
trary persons (just named Person1, etc) and arbitrarily as-
signed them values for some or all of these fields. We cre-
ated 5 million such persons, with a total of 20 million tri-
ples. We were able to query the list of people with the like-
lihood of getting skin cancer over 70% in 48ms. We were 
able to provide summary statistics of the number of per-
sons in each range (for example number of people with 
>=50% likelihood to get skin cancer) in 4 ms. We were 
able to rank all the persons by their likelihood to get skin 
cancer in 562 ms. These results demonstrate that our solu-
tion is able to query probability without any degradation in 
performance. 

Trade-Offs 
We have identified four trade-offs incurred by our solution: 
the time to initially populate the database, the time to per-
form updates to the dataset, the database's physical size, 
and memory consumption. To verify the extent of these 
trade-offs, we tested and quantified all four. 
 The time to initially populate the database with the Bar-
ton dataset is 41 minutes. The time required to add triples 
to the database depends on the nature of the triples added. 
We tested the time to add 1 million triples to the LUBM 
dataset, adding whole universities with complete sets of 
data.  This took 3.4 minutes compared to 1.7 minutes for 
the fastest solution, vertical partitioning. To show how the 
data affects the times, we added 1 million students to the 
database. This addition took only 1.1 minutes because 
fewer bit vectors were affected. Additionally, we did a 
smaller test, the addition of just 10,000 triples. This addi-
tion required only 2.9 seconds. 
 There is no established method for testing the perform-
ance times of deletions. We were able to delete a million 
triples in as little as 8 seconds depending on the data cho-
sen. To get more accurate results, we used a method simi-
lar to cross validation. We chose a 40 million triples 
dataset, and then we chose 1 million of the triples at ran-
dom using the ID numbers. We performed this test 10 
separate times with 10 different sets of deletions. The aver-
age time to delete 1 million triples was 26.7 seconds. 
 To performed all the tests in this paper, our maximum 
memory consumption was 3.54 GB of RAM. The size of 
the database was 3.4 GB for the Barton dataset. Note that 
one trade-off we chose in order to limit storage space is 
that we only store uncertain information in the POTable. 
This limitation does not reduce functionality, because we 
can always use the inverseOf construct to convert the data 
definitions. For example, s member o can be expressed as o 
memberOf s. So, this limitation defines how we define the 
ontology, but it does not limit the functionality. 
 We assert that nominal trade-offs in memory usage, 
storage size, and initial population time are not prohibitive. 
By storing data in multiple formats and materializing in-

1411



ferred triples, we increase storage requirements but we 
reduce I/O. Since we support additions and deletions, the 
initial populating of the dataset is a one-time event. The 
increase in physical storage space is not significant, and 
hard drive space is affordable in today's market. 

Related Work 

Significant research has addressed efficient schemata and 
storage schemes for RDF data.  However, our solution is 
novel in that we use bit vectors, and we persist inferred 
triples with high performance.  
 Vertical partitioning divides the dataset into 2 column 
tables (subject, object) based on property.  This enables 
high speed subject-subject joins.  Hexastore uses six indi-
ces to manage RDF data.  RDF-3X uses aggregate indexes, 
join statistics and query optimization to support efficient 
queries against RDF datasets.  BitMat (Atre&Hendler, 
2009) uses bit vectors as well but combines them into a 
main memory bit matrix.  However. BitMat cannot support 
additions or updates. 
 Jena supports registering and executing inference rules.  
However, the inferred triples are not persisted, and it isn't 
possible to update the dataset without re-executing infer-
ence from scratch.  Lu et al.  (2005) propose materializing 
and storing inferred triples.  However, their schema incurs 
a performance penalty for storing these triples, and the 
query performance of this solution is not competitive.   
 There is no standard for representing uncertainty in 
OWL ontologies.  We have relied heavily on the URW3-
XG's reports, recommendations, and use cases.  We have 
examined popular representation formats including Pronto, 
PR-OWL(Costa, Laskey & Laskey, 2008),  and Baye-
sOWL. We have utilized available tools including Pronto 
and  UnBBayes (http://unbbayes.sourceforge.net). We are 
examining fuzzy logic solutions including DeLorean (Bo-
billo&Delgado, 2008) and FiRE 
(http://www.image.ece.ntua.gr/~nsimou/FiRE/). 

Conclusion and Future Work 

We have defined a bit vector schema that is efficient and 
scalable.  We have detailed a framework for materializing 
inferred triples at addition time and storing them using this 
schema.  We have shown that this simplifies inference que-
ries and drastically improves performance.  We have pre-
sented query performance results using accepted bench-
mark datasets that demonstrate our solution outperforms 
the current state-of-the-art.  We have presented a solution 
which adds support for materialization and persistence of 
uncertain data and probabilities.  We have validated the 
correctness and efficiency of this solution.  
 There is no established data representation for uncer-
tainty in semantic web databanks.  Therefore, there are no 
large benchmark datasets or well defined queries to test 
and evaluate scalability and efficiency of queries involving 
probabilistic reasoning.  We have evaluated our solution 

with simple manufactured test datasets.  In the future, we 
will evaluate and optimize our solution for efficiency and 
scalability. We hope to identify or create benchmarks that 
correlate to the use cases defined in the URW3-XG report. 
We will also try to improve on our extensibility, to test 
with more probabilistic reasoning systems, to further inte-
grate with available tools, and to support uncertainty from 
other sources such as ontology mapping. Finally, we hope 
to integrate with Hadoop (http://hadoop.apache.org/) to 
make an even more scalable solution by using cloud com-
puting. 

References 
Abadi, D.J.; Marcus, A.; Madden, S.; Hollenbach, K.J. 2007. 
Scalable Semantic Web Data Management Using Vertical Parti-
tioning. In Proc. of VLDB, 411-422. 
Weiss, C.; Karras, P.; Bernstein, A. 2008. Hexastore: sextuple 
indexing for semantic web data management. In Proc. of VLDB,  
1008-1019. 
Sidirourgos, L.; Goncalves, R.; Kersten, M.L.; Nes, N.; Mane-
gold, S. 2008. Column-store support for RDF data management: 
not all swans are white. In Proc. of VLDB, 1553-1563. 
Neumann, T.; Weikum, G. 2008. RDF-3X: a RISC-style engine 
for RDF. In Proc. of VLDB, 647-659. 
Lu, J.; Yu, Y.; Tu, K.; Lin, C.; Zhang, L. 2005. An Approach to 
RDF(S) Query, Manipulation and Inference on Databases. In 
Proc. of  WAIM, 172-183. 
Costa, P.C.G.D.; Laskey, K.B.; Laskey, K.J. 2008. PR-OWL: A 
Bayesian Ontology Language for the Semantic Web.  In Proc. of 
URSW, 88-107. 
Yang, Y.; Calmet, J. 2005. OntoBayes: An Ontology-Driven 
Uncertainty Model. In Proc. of CIMCA/IAWTIC, 457-463. 
Ding, Z.; Peng, Y. 2004. A Probabilistic Extension to Ontology 
Language OWL. In Proc. of HICSS. 
Lukasiewicz, T. 2008. Expressive Probabilistic Description 
Logics. Artificial Intelligence, 172(6-7), 852-883. 
Bobillo, F.; Delgado, M.; Gomez-Romero,J. 2008. DeLorean: A 
Reasoner for Fuzzy OWL 1.1. In Proc. of URSW. 
Cali, A.; Lukasiewicz, T.; Prediou, L.; Stuckenschmidt, H.  2007. 
A Framework for Representing Ontology Mappings under Prob-
abilities and Inconsistency. In Proc. of URSW. 
Flouris, G; Fundulaki, I; Pediaditic, P; Theoharis, Y; Christo-
phides, V. 2009. Coloring RDF Triples to Capture Provenance. In 
Proceedings of ISWC, 196-212. 
Atre, M; Hendler, J. 2009. BitMat: A Main-memory Bit-Matrix 
of RDF Triples.  In Proceedings of SSWS Workshop, ISWC.\ 
Zhang, S; Sun, Y; Peng, Y; Wang, X. 2009.  BayesOWL: A Pro-
totypes System for Uncertainty in Semantic Web.  In Proceedings 
of IC-AI, 678-684.  
Bobillo, F.; Delgado, M.; Gomez-Romero,J. 2008. DeLorean: A 
Reasoner for Fuzzy OWL 1.1. In Proc. of URSW. 

1412




